#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Epstein Barr Virus-Encoded EBNA1 Interference with MHC Class I Antigen Presentation Reveals a Close Correlation between mRNA Translation Initiation and Antigen Presentation


Viruses are known to employ different strategies to manipulate the major histocompatibility (MHC) class I antigen presentation pathway to avoid recognition of the infected host cell by the immune system. However, viral control of antigen presentation via the processes that supply and select antigenic peptide precursors is yet relatively unknown. The Epstein-Barr virus (EBV)-encoded EBNA1 is expressed in all EBV-infected cells, but the immune system fails to detect and destroy EBV-carrying host cells. This immune evasion has been attributed to the capacity of a Gly-Ala repeat (GAr) within EBNA1 to inhibit MHC class I restricted antigen presentation. Here we demonstrate that suppression of mRNA translation initiation by the GAr in cis is sufficient and necessary to prevent presentation of antigenic peptides from mRNAs to which it is fused. Furthermore, we demonstrate a direct correlation between the rate of translation initiation and MHC class I antigen presentation from a certain mRNA. These results support the idea that mRNAs, and not the encoded full length proteins, are used for MHC class I restricted immune surveillance. This offers an additional view on the role of virus-mediated control of mRNA translation initiation and of the mechanisms that control MHC class I restricted antigen presentation in general.


Vyšlo v časopise: Epstein Barr Virus-Encoded EBNA1 Interference with MHC Class I Antigen Presentation Reveals a Close Correlation between mRNA Translation Initiation and Antigen Presentation. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001151
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001151

Souhrn

Viruses are known to employ different strategies to manipulate the major histocompatibility (MHC) class I antigen presentation pathway to avoid recognition of the infected host cell by the immune system. However, viral control of antigen presentation via the processes that supply and select antigenic peptide precursors is yet relatively unknown. The Epstein-Barr virus (EBV)-encoded EBNA1 is expressed in all EBV-infected cells, but the immune system fails to detect and destroy EBV-carrying host cells. This immune evasion has been attributed to the capacity of a Gly-Ala repeat (GAr) within EBNA1 to inhibit MHC class I restricted antigen presentation. Here we demonstrate that suppression of mRNA translation initiation by the GAr in cis is sufficient and necessary to prevent presentation of antigenic peptides from mRNAs to which it is fused. Furthermore, we demonstrate a direct correlation between the rate of translation initiation and MHC class I antigen presentation from a certain mRNA. These results support the idea that mRNAs, and not the encoded full length proteins, are used for MHC class I restricted immune surveillance. This offers an additional view on the role of virus-mediated control of mRNA translation initiation and of the mechanisms that control MHC class I restricted antigen presentation in general.


Zdroje

1. RockKL

GrammC

RothsteinL

ClarkK

SteinR

1994 Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78 761 771

2. RockKL

YorkIA

GoldbergAL

2004 Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat Immunol 5 670 677

3. KloetzelPM

2004 Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat Immunol 5 661 669

4. Van KaerL

Ashton-RickardtPG

PloeghHL

TonegawaS

1992 TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4-8+ T cells. Cell 71 1205 1214

5. SerwoldT

GonzalezF

KimJ

JacobR

ShastriN

2002 ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419 480 483

6. FalkK

RotzschkeO

StevanovicS

JungG

RammenseeHG

1991 Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351 290 296

7. GoldbergAL

DiceJF

1974 Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem 43 835 869

8. QianSB

ReitsE

NeefjesJ

DeslichJM

BenninkJR

2006 Tight linkage between translation and MHC class I peptide ligand generation implies specialized antigen processing for defective ribosomal products. J Immunol 177 227 233

9. YewdellJW

AntonLC

BenninkJR

1996 Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 157 1823 1826

10. ReitsEA

VosJC

GrommeM

NeefjesJ

2000 The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404 774 778

11. ShastriN

CardinaudS

SchwabSR

SerwoldT

KunisawaJ

2005 All the peptides that fit: the beginning, the middle, and the end of the MHC class I antigen-processing pathway. Immunol Rev 207 31 41

12. YewdellJW

BenninkJR

1999 Mechanisms of viral interference with MHC class I antigen processing and presentation. Annu Rev Cell Dev Biol 15 579 606

13. TortorellaD

GewurzBE

FurmanMH

SchustDJ

PloeghHL

2000 Viral subversion of the immune system. Annu Rev Immunol 18 861 926

14. RoweM

LearAL

Croom-CarterD

DaviesAH

RickinsonAB

1992 Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J Virol 66 122 131

15. LevitskayaJ

CoramM

LevitskyV

ImrehS

Steigerwald-MullenPM

1995 Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375 685 688

16. BlakeN

LeeS

RedchenkoI

ThomasW

StevenN

1997 Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 7 791 802

17. BennettNJ

MayJS

StevensonPG

2005 Gamma-herpesvirus latency requires T cell evasion during episome maintenance. PLoS Biol 3 e120

18. KwunHJ

da SilvaSR

ShahIM

BlakeN

MoorePS

2007 Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics Epstein-Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J Virol 81 8225 8235

19. ApcherS

KomarovaA

DaskalogianniC

YinY

Malbert-ColasL

2009 mRNA translation regulation by the Gly-Ala repeat of Epstein-Barr virus nuclear antigen 1. J Virol 83 1289 1298

20. YinY

ManouryB

FahraeusR

2003 Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science 301 1371 1374

21. ShastriN

GonzalezF

1993 Endogenous generation and presentation of the ovalbumin peptide/Kb complex to T cells. J Immunol 150 2724 2736

22. ChenW

KhilkoS

FecondoJ

MarguliesDH

McCluskeyJ

1994 Determinant selection of major histocompatibility complex class I-restricted antigenic peptides is explained by class I-peptide affinity and is strongly influenced by nondominant anchor residues. J Exp Med 180 1471 1483

23. KarttunenJ

SandersonS

ShastriN

1992 Detection of rare antigen-presenting cells by the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens. Proc Natl Acad Sci U S A 89 6020 6024

24. DaskalogianniC

ApcherS

CandeiasMM

NaskiN

CalvoF

2008 Gly-Ala repeats induce position- and substrate-specific regulation of 26 S proteasome-dependent partial processing. J Biol Chem 283 30090 30100

25. SchwabSR

LiKC

KangC

ShastriN

2003 Constitutive display of cryptic translation products by MHC class I molecules. Science 301 1367 1371

26. ShastriN

NguyenV

GonzalezF

1995 Major histocompatibility class I molecules can present cryptic translation products to T-cells. J Biol Chem 270 1088 1091

27. NavonA

GoldbergAL

2001 Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol Cell 8 1339 1349

28. YorkIA

GoldbergAL

MoXY

RockKL

1999 Proteolysis and class I major histocompatibility complex antigen presentation. Immunol Rev 172 49 66

29. KloetzelPM

OssendorpF

2004 Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 16 76 81

30. NanbruC

LafonI

AudigierS

GensacMC

VagnerS

1997 Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J Biol Chem 272 32061 32066

31. CreancierL

MercierP

PratsAC

MorelloD

2001 c-myc Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. Mol Cell Biol 21 1833 1840

32. StoneleyM

SubkhankulovaT

Le QuesneJP

ColdwellMJ

JoplingCL

2000 Analysis of the c-myc IRES; a potential role for cell-type specific trans-acting factors and the nuclear compartment. Nucleic Acids Res 28 687 694

33. Le QuesneJP

StoneleyM

FraserGA

WillisAE

2001 Derivation of a structural model for the c-myc IRES. J Mol Biol 310 111 126

34. BlakeNW

MoghaddamA

RaoP

KaurA

GlickmanR

1999 Inhibition of antigen presentation by the glycine/alanine repeat domain is not conserved in simian homologues of Epstein-Barr virus nuclear antigen 1. J Virol 73 7381 7389

35. MackayLK

LongHM

BrooksJM

TaylorGS

LeungCS

2009 T cell detection of a B-cell tropic virus infection: newly-synthesised versus mature viral proteins as antigen sources for CD4 and CD8 epitope display. PLoS Pathog 5 e1000699

36. CardinaudS

StarckSR

ChandraP

ShastriN

2010 The synthesis of truncated polypeptides for immune surveillance and viral evasion. PLoS One 5 e8692

37. TellamJ

SmithC

RistM

WebbN

CooperL

2008 Regulation of protein translation through mRNA structure influences MHC class I loading and T cell recognition. Proc Natl Acad Sci U S A 105 9319 9324

38. NorseenJ

ThomaeA

SridharanV

AiyarA

SchepersA

2008 RNA-dependent recruitment of the origin recognition complex. EMBO J 27 3024 3035

39. YewdellJW

ReitsE

NeefjesJ

2003 Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat Rev Immunol 3 952 961

40. KhanS

de GiuliR

SchmidtkeG

BrunsM

BuchmeierM

2001 Cutting edge: neosynthesis is required for the presentation of a T cell epitope from a long-lived viral protein. J Immunol 167 4801 4804

41. FahraeusR

2005 Do peptides control their own birth and death? Nat Rev Mol Cell Biol 6 263 267

42. HondaR

TanakaH

YasudaH

1997 Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420 25 27

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#