Phenolglycolipid-1 Expressed by Engineered BCG Modulates Early Interaction with Human Phagocytes
The species-specific phenolic glycolipid 1 (PGL-1) is suspected to play a critical role in the pathogenesis of leprosy, a chronic disease of the skin and peripheral nerves caused by Mycobacterium leprae. Based on studies using the purified compound, PGL-1 was proposed to mediate the tropism of M. leprae for the nervous system and to modulate host immune responses. However, deciphering the biological function of this glycolipid has been hampered by the inability to grow M. leprae in vitro and to genetically engineer this bacterium. Here, we identified the M. leprae genes required for the biosynthesis of the species-specific saccharidic domain of PGL-1 and reprogrammed seven enzymatic steps in M. bovis BCG to make it synthesize and display PGL-1 in the context of an M. leprae-like cell envelope. This recombinant strain provides us with a unique tool to address the key questions of the contribution of PGL-1 in the infection process and to study the underlying molecular mechanisms. We found that PGL-1 production endowed recombinant BCG with an increased capacity to exploit complement receptor 3 (CR3) for efficient invasion of human macrophages and evasion of inflammatory responses. PGL-1 production also promoted bacterial uptake by human dendritic cells and dampened their infection-induced maturation. Our results therefore suggest that M. leprae produces PGL-1 for immune-silent invasion of host phagocytic cells.
Vyšlo v časopise:
Phenolglycolipid-1 Expressed by Engineered BCG Modulates Early Interaction with Human Phagocytes. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001159
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001159
Souhrn
The species-specific phenolic glycolipid 1 (PGL-1) is suspected to play a critical role in the pathogenesis of leprosy, a chronic disease of the skin and peripheral nerves caused by Mycobacterium leprae. Based on studies using the purified compound, PGL-1 was proposed to mediate the tropism of M. leprae for the nervous system and to modulate host immune responses. However, deciphering the biological function of this glycolipid has been hampered by the inability to grow M. leprae in vitro and to genetically engineer this bacterium. Here, we identified the M. leprae genes required for the biosynthesis of the species-specific saccharidic domain of PGL-1 and reprogrammed seven enzymatic steps in M. bovis BCG to make it synthesize and display PGL-1 in the context of an M. leprae-like cell envelope. This recombinant strain provides us with a unique tool to address the key questions of the contribution of PGL-1 in the infection process and to study the underlying molecular mechanisms. We found that PGL-1 production endowed recombinant BCG with an increased capacity to exploit complement receptor 3 (CR3) for efficient invasion of human macrophages and evasion of inflammatory responses. PGL-1 production also promoted bacterial uptake by human dendritic cells and dampened their infection-induced maturation. Our results therefore suggest that M. leprae produces PGL-1 for immune-silent invasion of host phagocytic cells.
Zdroje
1. WHO 2004 WHO leprosy elimination project: status report 2003 Geneva, Switzerland 8 11
2. WHO 2009 Global leprosy situation, 2009. Weekly epidemiological record 84 333 340
3. BrittonWJ
LockwoodDNJ
2004 Leprosy. The Lancet 363 1209 1219
4. HunterSW
BrennanPJ
1981 A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. J Bacteriol 147 728 735
5. DafféM
LanéelleMA
1988 Distribution of Phthiocerol diester, phenolic mycosides and related compounds in Mycobacteria. J Gen Microbiol 134 2049 2055
6. RambukkanaA
SalzerJL
YurchencoPD
TuomanenE
1997 Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin-alpha2 chain. Cell 88 811 821
7. NgV
ZanazziG
TimplR
TaltsJF
SalzerJL
2000 Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. Cell 103 511 524
8. MarquesMAM
AntônioVL
SarnoEN
BrennanPJ
PessolaniMCV
2001 Binding of α2-laminins by pathogenic and non-pathogenic mycobacteria and adherence to Schwann cells. J Med Microbiol 50 23 28
9. NeillMA
KlebanoffSJ
1988 The effect of phenolic glycolipid-1 from Mycobacterium leprae on the antimicrobial activity of human macrophages. J Exp Med 167 30 42
10. ChanJ
FujiwaraT
BrennanP
McNeilM
TurcoSJ
1989 Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc Natl Acad Sci USA 86 2453 2457
11. SchlesingerLS
HorwitzMA
1991 Phenolic glycolipid-1 of Mycobacterium leprae binds complement component C3 in serum and mediates phagocytosis by human monocytes. J Exp Med 174 1031 1038
12. SilvaCL
FaccioliLH
1993 Suppression of human monocyte cytokine release by phenolic glycolipid-1 of Mycobacterium leprae. Int J Lepr Other Mycobact Dis 61 107 108
13. HashimotoK
MaedaY
KimuraH
MasudaA
MatsuokaM
2002 Mycobacterium leprae infection in monocyte-derived dendritic cells and its influence on antigen-presenting function. Infect Immun 70 5167 5176
14. MurrayRA
SiddiquiMR
MendilloM
KrahenbuhlJ
KaplanG
2007 Mycobacterium leprae inhibits dendritic cell activation and maturation. J Immunol 178 338 344
15. HunterSW
FujiwaraT
BrennanPJ
1982 Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae. J Biol Chem 257 15072 15078
16. PerezE
ConstantP
LavalF
LemassuA
LanéelleMA
2004 Molecular dissection of the role of two methyltransferases in the biosynthesis of phenolglycolipids and phthiocerol dimycoserosate in the Mycobacterium tuberculosis complex. J Biol Chem 279 42584 45592
17. GuilhotC
DafféM
2008 Polyketides and polyketides-containing glycolipids of Mycobacterium tuberculosis: structure, biosynthesis and biological activities.
KaufmannSHE
RubinE
Hanbook of tuberculosis Molecular biology and biochemistry Weinheim Wiley-VCH Verlag GmbH & Co 21 51
18. OnwuemeKC
VosCJ
ZuritaJ
FerrarasJA
QuadriLEN
2005 The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog Lipid Res 44 259 302
19. PerezE
ConstantP
LemassuA
LavalF
DaffeM
2004 Characterization of three glycosyltransferases involved in the biosynthesis of the phenolic glycolipid antigens from the Mycobacterium tuberculosis complex. J Biol Chem 279 42574 42583
20. ColeST
BroschR
ParkhillJ
GarnierT
ChurcherC
1998 Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393 537 544
21. BardarovS
KriakovJ
CarriereC
YuS
VaamondeC
1997 Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 94 10961 10966
22. MalagaW
PerezE
GuilhotC
2003 Production of unmarked mutations in mycobacteria using site-specific recombination. FEMS Microbiol Lett 219 261 268
23. MalagaW
ConstantP
EuphrasieD
CataldiA
DafféM
2008 Deciphering the genetic bases of the structural diversity of phenolic glycolipids in strains of the Mycobacterium tuberculosis complex. J Biol Chem 283 15177 15184
24. ConstantP
PerezE
MalagaW
LanéelleM-A
SaurelO
2002 Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the M. tuberculosis complex: evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbour a frameshift mutation in the pks15/1 gene. J Biol Chem 277 38148 38158
25. StoverCK
de la CruzVF
FuerstTR
BurleinJE
BensonLA
1991 New use of BCG for recombinant vaccines. Nature 351 456 460
26. DafféM
LanéelleM-A
1989 Diglycosyl phenol phthiocerol diester of Mycobacterium leprae. Biochim Biophys Acta 1002 333 337
27. Le CabecV
ColsC
Maridonneau-PariniI
2000 Nonopsonic phagocytosis of zymosan and Mycobacterium kansasii by CR3 (CD11b/CD18) involves distinct molecular determinants and is or is not coupled with NADPH oxidase activation. Infect Immun 68 4736 4745
28. CywesC
GodenirNL
HoppeHC
ScholleRR
SteynLM
1996 Nonopsonic binding of Mycobacterium tuberculosis to human complement receptor type 3 expressed in chinese hamster ovary cells. Infect Immun 64 5373 5383
29. SchlesingerLS
HorwitzMA
1990 Phagocytosis of leprosy bacilli is mediated by complement receptor CR1 and CR3 on human monocytes and complement component C3 in serum. J Clin Invest 85 1304 1314
30. DiamondMS
Garcia-AguilarJ
BickfodtJK
CorbiAL
SpringerTA
1993 The I-domain is a major recognition site on leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J Cell Biol 120 1031 1043
31. ErnstJD
1998 Macrophage receptors for Mycobacterium tuberculosis. Infect Immun 66 1277 1281
32. SendideK
ReinerNE
LeeJS
BourgoinS
TalalA
2005 Cross-talk between CD14 and complement receptor 3 promotes phagocytosis of mycobacteria: regulation by phosphatidylinositol 3-kinase and cytohesin-1. J Immunol 174 4210 4219
33. ThorntonBP
VetvickaV
PitmanM
GoldmanRC
RossGD
1996 Analysis of the sugar specificity and molecular location of the β-glucan-biding lectin site of complement receptor type 3 (CD11b, CD18). J Immunol 156 1235 1246
34. MorelliAE
LarreginaAT
ShufeskyWJ
ZahorchakAF
LogarAJ
2003 Internalization of cirvulating apoptotic cells by splenic marginal zone dendritic cells: dependence on complement receptors and effect on cytokine production. Blood 101 611 620
35. MedvedevAE
FloT
IngallsRR
GolenbockDT
TetiG
1998 Involvment of CD14 and complement receptors CR3 and CR4 in nuclear factor-kappa B activation and TNF production induced by lipopolysaccharide and group B streptococcal cell walls. J Immunol 160 4535 4542
36. MarthT
KelsallBL
1997 Regulation of interleukin-12 by complement receptor 3 signalling. J Exp Med 185 1987 1995
37. BrandhorstT
WüthrichM
Finkel-JimenezB
WarnerT
KleinB
2004 Exploiting type 3 complement receptor for TNF-α suppression, immune evasion and progressive pulmonary fungal infection. J Immunol 173 7444 7453
38. VilléC
Gastambide-OdierM
1970 Le 3-O-méthyl-L-rhamnose, sucre du mycoside G de Mycobacterium marinum. Carbohydr Res 12 97 107
39. DafféM
VarnerotA
Vincent Lévy-FrébaultV
1992 The phenolic mycoside of Mycobacterium ulcerans: structure and taxonomic implications. J Gen Microbiol 138 131 137
40. EiglmeierK
HonoréN
WoodsSA
CaudronB
ColeST
1993 Use of an ordered cosmid library to deduce the genomic organization of Mycobacterium leprae. Mol Microbiol 7 197 206
41. Le DantecC
WinterN
GicquelB
VincentV
PicardeauM
2001 Genomic sequence and transcriptional analysis of a 23-kb mycobacterial linear plasmid: evidence for horizontal transfer and identification of plasmid maintenance systems. J Bacteriol 183 2157 2164
42. BardarovS
BardarovSJr
PavelkaMS
SamdandamurthyV
LarsenM
2002 Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148 3007 3017
43. HuetG
ConstantP
MalagaW
LanéelleM-A
KremerK
2008 A lipid profile typifies the Beijing strains of Mycobacterium tuberculosis. Identification of a mutation responsible for a modification of the structures of phthiocerol dimycocerosates and phenolic glycolipids. J Biol Chem 284 27101 27113
44. Astarie-DequekerC
Le GuyaderL
MalagaW
SeaphanhF-K
ChalutC
2009 Phthiocerol dimycocerosates of M. tuberculosis participate in the invasion of human macrophages by inducing changes in the lipid organization of the plasma membrane. PLoS Pathogens 5 e1000289
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 10
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Retroviral RNA Dimerization and Packaging: The What, How, When, Where, and Why
- Viral Replication Rate Regulates Clinical Outcome and CD8 T Cell Responses during Highly Pathogenic H5N1 Influenza Virus Infection in Mice
- Antimicrobial Peptides: Primeval Molecules or Future Drugs?
- Crystal Structure of DotD: Insights into the Relationship between Type IVB and Type II/III Secretion Systems