#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cytomegalovirus microRNAs Facilitate Persistent Virus Infection in Salivary Glands


Micro (mi)RNAs are small non-coding RNAs that regulate the expression of their targets' messenger RNAs through both translational inhibition and regulation of target RNA stability. Recently, a number of viruses, particularly of the herpesvirus family, have been shown to express their own miRNAs to control both viral and cellular transcripts. Although some targets of viral miRNAs are known, their function in a physiologically relevant infection remains to be elucidated. As such, no in vivo phenotype of a viral miRNA knock-out mutant has been described so far. Here, we report on the first functional phenotype of a miRNA knock-out virus in vivo. During subacute infection of a mutant mouse cytomegalovirus lacking two viral miRNAs, virus production is selectively reduced in salivary glands, an organ essential for virus persistence and horizontal transmission. This phenotype depends on several parameters including viral load and mouse genetic background, and is abolished by combined but not single depletion of natural killer (NK) and CD4+ T cells. Together, our results point towards a miRNA-based immunoevasion mechanism important for long-term virus persistence.


Vyšlo v časopise: Cytomegalovirus microRNAs Facilitate Persistent Virus Infection in Salivary Glands. PLoS Pathog 6(10): e32767. doi:10.1371/journal.ppat.1001150
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001150

Souhrn

Micro (mi)RNAs are small non-coding RNAs that regulate the expression of their targets' messenger RNAs through both translational inhibition and regulation of target RNA stability. Recently, a number of viruses, particularly of the herpesvirus family, have been shown to express their own miRNAs to control both viral and cellular transcripts. Although some targets of viral miRNAs are known, their function in a physiologically relevant infection remains to be elucidated. As such, no in vivo phenotype of a viral miRNA knock-out mutant has been described so far. Here, we report on the first functional phenotype of a miRNA knock-out virus in vivo. During subacute infection of a mutant mouse cytomegalovirus lacking two viral miRNAs, virus production is selectively reduced in salivary glands, an organ essential for virus persistence and horizontal transmission. This phenotype depends on several parameters including viral load and mouse genetic background, and is abolished by combined but not single depletion of natural killer (NK) and CD4+ T cells. Together, our results point towards a miRNA-based immunoevasion mechanism important for long-term virus persistence.


Zdroje

1. MocarskiES

ShenkT

PassRF

2007 Cytomegaloviruses.

KnipeDM

HowleyPM

GriffinDE

LambRA

MartinMA

Fields Virology. 5th ed Philadelphia Lippincott, Williams & Wilkins 2701 2772

2. ScalzoAA

CorbettAJ

RawlinsonWD

ScottGM

Degli-EspostiMA

2007 The interplay between host and viral factors in shaping the outcome of cytomegalovirus infection. Immunol Cell Biol 85 46 54

3. GottweinE

CullenBR

2008 Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3 375 387

4. AmbrosV

2004 The functions of animal microRNAs. Nature 431 350 355

5. BaekD

VillenJ

ShinC

CamargoFD

GygiSP

2008 The impact of microRNAs on protein output. Nature 455 64 71

6. SelbachM

SchwanhausserB

ThierfelderN

FangZ

KhaninR

2008 Widespread changes in protein synthesis induced by microRNAs. Nature 455 58 63

7. SullivanCS

SungCK

PackCD

GrundhoffA

LukacherAE

2009 Murine Polyomavirus encodes a microRNA that cleaves early RNA transcripts but is not essential for experimental infection. Virology 387 157 167

8. PolicB

HengelH

KrmpoticA

TrgovcichJ

PavicI

1998 Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188 1047 1054

9. PolicB

JonjicS

PavicI

CrnkovicI

ZoricaI

1996 Lack of MHC class I complex expression has no effect on spread and control of cytomegalovirus infection in vivo. J Gen Virol 77 Pt 2 217 225

10. BuckAH

Santoyo-LopezJ

RobertsonKA

KumarDS

ReczkoM

2007 Discrete clusters of virus-encoded microRNAs are associated with complementary strands of the genome and the 7.2-kilobase stable intron in murine cytomegalovirus. J Virol 81 13761 13770

11. DolkenL

PerotJ

CognatV

AliouaA

JohnM

2007 Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J Virol 81 13771 13782

12. DunnW

TrangP

ZhongQ

YangE

van BelleC

2005 Human cytomegalovirus expresses novel microRNAs during productive viral infection. Cell Microbiol 7 1684 1695

13. GreyF

AntoniewiczA

AllenE

SaugstadJ

McSheaA

2005 Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 79 12095 12099

14. WarmingS

CostantinoN

CourtDL

JenkinsNA

CopelandNG

2005 Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33 e36

15. AraseH

MocarskiES

CampbellAE

HillAB

LanierLL

2002 Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296 1323 1326

16. SmithHR

HeuselJW

MehtaIK

KimS

DornerBG

2002 Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A 99 8826 8831

17. SacherT

PodlechJ

MohrCA

JordanS

RuzsicsZ

2008 The major virus-producing cell type during murine cytomegalovirus infection, the hepatocyte, is not the source of virus dissemination in the host. Cell Host Microbe 3 263 272

18. CampbellAE

CavanaughVJ

SlaterJS

2008 The salivary glands as a privileged site of cytomegalovirus immune evasion and persistence. Med Microbiol Immunol 197 205 213

19. HuangS

HendriksW

AlthageA

HemmiS

BluethmannH

1993 Immune response in mice that lack the interferon-gamma receptor. Science 259 1742 1745

20. LussierG

BerthiaumeL

PaymentP

1974 Electron microscopy of murine cytomegalovirus: development of the virus in vivo and in vitro. Arch Gesamte Virusforsch 46 269 280

21. JonjicS

MutterW

WeilandF

ReddehaseMJ

KoszinowskiUH

1989 Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. J Exp Med 169 1199 1212

22. OsbornJE

WalkerDL

1971 Virulence and Attenuation of Murine Cytomegalovirus. Infect Immun 3 228 236

23. ReddehaseMJ

WeilandF

MunchK

JonjicS

LuskeA

1985 Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55 264 273

24. SmithMG

1954 Propagation of salivary gland virus of the mouse in tissue cultures. Proc Soc Exp Biol Med 86 435 440

25. Stern-GinossarN

ElefantN

ZimmermannA

WolfDG

SalehN

2007 Host immune system gene targeting by a viral miRNA. Science 317 376 381

26. MatloubianM

DavidA

EngelS

RyanJE

CysterJG

2000 A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol 1 298 304

27. GeissmannF

CameronTO

SidobreS

ManlongatN

KronenbergM

2005 Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 3 e113

28. AbelS

HundhausenC

MentleinR

SchulteA

BerkhoutTA

2004 The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J Immunol 172 6362 6372

29. DayC

PatelR

GuillenC

WardlawAJ

2009 The chemokine CXCL16 is highly and constitutively expressed by human bronchial epithelial cells. Exp Lung Res 35 272 283

30. GreyF

MeyersH

WhiteEA

SpectorDH

NelsonJ

2007 A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 3 e163

31. Stern-GinossarN

SalehN

GoldbergMD

PrichardM

WolfDG

2009 Analysis of human cytomegalovirus-encoded microRNA activity during infection. J Virol 83 10684 10693

32. PfefferS

SewerA

Lagos-QuintanaM

SheridanR

SanderC

2005 Identification of microRNAs of the herpesvirus family. Nat Methods 2 269 276

33. BruneW

HengelH

KoszinowskiUH

2001 A mouse model for cytomegalovirus infection. Curr Protoc Immunol Chapter 19 Unit 19 17

34. CobboldSP

JayasuriyaA

NashA

ProsperoTD

WaldmannH

1984 Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312 548 551

35. KooGC

PeppardJR

1984 Establishment of monoclonal anti-Nk-1.1 antibody. Hybridoma 3 301 303

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#