#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Collaboration and followership: A stochastic model for activities in social networks


Autoři: Carolina Becatti aff001;  Irene Crimaldi aff002;  Fabio Saracco aff001
Působiště autorů: Networks Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy aff001;  Axes Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy aff002
Vyšlo v časopise: PLoS ONE 14(10)
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pone.0223768

Souhrn

In this work we investigate how future actions are influenced by the previous ones, in the specific contexts of scientific collaborations and friendships on social networks. We describe the activity of the agents, providing a model for the formation of the bipartite network of actions and their features. Therefore we only require to know the chronological order in which the actions are performed, and not the order in which the agents are observed. Moreover, the total number of possible features is not specified a priori but is allowed to increase along time, and new actions can independently show some new-entry features or exhibit some of the old ones. The choice of the old features is driven by a degree-fitness method: indeed, the probability that a new action shows one of the old features does not solely depend on the popularity of that feature (i.e. the number of previous actions showing it), but it is also affected by some individual traits of the agents or the features themselves, synthesized in certain quantities, called fitnesses or weights, that can have different forms and different meaning according to the specific setting considered. We show some theoretical properties of the model and provide statistical tools for the parameters’ estimation. The model has been tested on three different datasets and the numerical results are provided and discussed.

Klíčová slova:

Network analysis – Simulation and modeling – Aging – Internet – Social networks – Random variables – High-energy physics – Crawling


Zdroje

1. Caldarelli G. Scale-Free Networks: Complex Webs in Nature and Technology. Oxford University Press, Oxford (UK), 2010.

2. Golosovsky M. Preferential attachment mechanism of complex network growth: “rich-gets-richer” or “fit-gets-richer”? feb 2018.

3. Newman MEJ. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys., 46(5):323–351, 2005. doi: 10.1080/00107510500052444

4. Newman MEJ. Networks. An introduction. 2010.

5. Barabási AL and Albert R. Emergence of scaling in random networks. Science (80-)., 286(5439):509–512, oct 1999. doi: 10.1126/science.286.5439.509

6. de Solla Price DJ Networks of Scientific Papers. Science (80-)., 149(3683):510–515, 1965. doi: 10.1126/science.149.3683.510

7. Yule GU. A Mathematical Theory of Evolution based on the Conclusions of Dr. J.C. Willis, F.R.S. J. R. Stat. Soc., 88(3):433–436, 1925.

8. Krapivsky PL and Redner S. Organization of growing random networks. Phys. Rev. E—Stat. Physics, Plasmas Plasmas, Fluids, Relat. Interdiscip. Top., 63(6), 2001.

9. Krapivsky PL, Redner S, and Leyvraz F. Connectivity of growing random networks. Phys. Rev. Lett., 85(21):4629–4632, 2000. doi: 10.1103/PhysRevLett.85.4629 11082613

10. Bianconi G and Barabási AL. Bose-Einstein condensation in complex networks. Phys. Rev. Lett., 86:5632, 2001. doi: 10.1103/PhysRevLett.86.5632 11415319

11. Bianconi G and Barabási AL. Competition and multiscaling in evolving networks. Europhys. Lett., 54(4):436–442, 2001. doi: 10.1209/epl/i2001-00260-6

12. Dorogovtsev SN and Mendes JFF. Evolution of reference networks with aging. Phys. Rev. E, 62(2):1842–1845, aug 2000.

13. Medo M, Cimini G, and Gualdi S. Temporal effects in the growth of networks. Phys. Rev. Lett., 107(23):238701, dec 2011. doi: 10.1103/PhysRevLett.107.238701 22182132

14. Wang D, Song C, and Barabási AL. Quantifying long-term scientific impact. Science (80-)., 342(6154):127–132, oct 2013. doi: 10.1126/science.1237825

15. Caldarelli G, Capocci A, De Los Rios P, and Muñoz MA. Scale-Free Networks from Varying Vertex Intrinsic Fitness. Phys. Rev. Lett., 89(25), 2002. doi: 10.1103/PhysRevLett.89.258702 12484927

16. Guillaume JL and Latapy M. Bipartite graphs as models of complex networks. Phys. A Stat. Mech. its Appl., 371(2):795–813, 2006. doi: 10.1016/j.physa.2006.04.047

17. Mondaini Calvão A, Arantes Paixão C, Codeco Coelho R, and Rocha Souza R. The consumer litigation industry: Chasing dragon kings in lawyer–client networks. Social Networks, 40:17–24, 2015. doi: 10.1016/j.socnet.2014.07.001

18. Roth C and Cointet JP. Social and semantic coevolution in knowledge networks. Social Networks, 32(1):16–29, 2010. doi: 10.1016/j.socnet.2009.04.005

19. Saracco F, Di Clemente R, Gabrielli A, and Pietronero L. From innovation to diversification: A simple competitive model. PLoS One, 10(11), 2015. doi: 10.1371/journal.pone.0140420 26544685

20. Kauffman S. At Home in the Universe: The Search for the Laws of Self-Organization and Complexity. 1995.

21. Boldi P, Crimaldi I and Monti C. A network model characterized by a latent attribute structure with competition. Inf. Sci., 354:236–256, 2016. doi: 10.1016/j.ins.2016.02.057

22. Crimaldi I, Del Vicario M, Morrison G, Quattrociocchi W and Riccaboni M. Modelling Networks with a Growing Feature-Structure. Interdiscip. Inf. Sci., 23(2):127–144, 2017.

23. Birmelé E A scale-free graph model based on bipartite graphs. Discret. Appl. Math., 157(10):2267–2284, 2009. doi: 10.1016/j.dam.2008.06.052

24. Berti P, Crimaldi I, Pratelli L, and Rigo P. Central limit theorems for an indian buffet model with random weights. The Annals of Applied Probability, 25(2):523–547, 2015. doi: 10.1214/14-AAP1002

25. Ghahramani Z and Griffiths TL. Infinite latent feature models and the indian buffet process. In Advances in neural information processing systems, pages 475–482, 2006.

26. Teh YW and Gorur D. Indian buffet processes with power-law behavior. In Advances in neural information processing systems, pages 1838–1846, 2009.

27. Leskovec J, Kleinberg J, and Faloutsos C. Graph Evolution: Densification and Shrinking Diameters. ACM Trans. Knowl. Discov. from Data ACM Trans. Knowl. Discov. Data, 1(41), 2006.

28. Ferrara E, Interdonato R, and Tagarelli A. Online Popularity and Topical Interests through the Lens of Instagram. Proc. 25th ACM Conf. Hypertext Soc. media—HT’14, pages 24–34, 2014.


Článok vyšiel v časopise

PLOS One


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#