#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Mutations in the Heme Exporter Cause Sensory Neurodegeneration with Loss of Pain Perception


Hereditary Sensory and Autonomic Neuropathy (HSAN) is a genetic disorder mainly characterized by the impairment of sensory neurons, which transmit information about sensations such as pain, temperature and touch. Therefore, unintentional self-injury, leading to ulcers and eventually amputations are common in affected individuals. Although mutations in several genes were previously associated with sensory neurodegeneration and pain insensitivity, the etiology of many cases remains unknown. We here identify mutations in the heme exporter protein FLVCR1 in patients with congenital inability to experience pain. We showed that FLVCR1 mutations results in reduced heme export activity, enhanced oxidative stress and increased sensitivity to programmed cell death. These data assign a surprising role for heme to sensory neuron maintenance.


Vyšlo v časopise: Mutations in the Heme Exporter Cause Sensory Neurodegeneration with Loss of Pain Perception. PLoS Genet 12(12): e32767. doi:10.1371/journal.pgen.1006461
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1006461

Souhrn

Hereditary Sensory and Autonomic Neuropathy (HSAN) is a genetic disorder mainly characterized by the impairment of sensory neurons, which transmit information about sensations such as pain, temperature and touch. Therefore, unintentional self-injury, leading to ulcers and eventually amputations are common in affected individuals. Although mutations in several genes were previously associated with sensory neurodegeneration and pain insensitivity, the etiology of many cases remains unknown. We here identify mutations in the heme exporter protein FLVCR1 in patients with congenital inability to experience pain. We showed that FLVCR1 mutations results in reduced heme export activity, enhanced oxidative stress and increased sensitivity to programmed cell death. These data assign a surprising role for heme to sensory neuron maintenance.


Zdroje

1. Rotthier A, Baets J, Timmerman V, Janssens K. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat Rev Neurol. 2012;8(2):73–85. doi: 10.1038/nrneurol.2011.227 22270030

2. Auer-Grumbach M. Hereditary sensory and autonomic neuropathies. Handb Clin Neurol. 2013;115:893–906. doi: 10.1016/B978-0-444-52902-2.00050-3 23931820

3. Bennett DL, Woods CG. Painful and painless channelopathies. Lancet Neurol. 2014;13(6):587–99. doi: 10.1016/S1474-4422(14)70024-9 24813307

4. Verpoorten N, De Jonghe P, Timmerman V. Disease mechanisms in hereditary sensory and autonomic neuropathies. Neurobiol Dis. 2006;21(2):247–55. doi: 10.1016/j.nbd.2005.08.004 16183296

5. Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK, Akutsu M, et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature. 2015;522(7556):354–8. doi: 10.1038/nature14498 26040720

6. Kurth I, Pamminger T, Hennings JC, Soehendra D, Huebner AK, Rotthier A, et al. Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat Genet. 2009;41(11):1179–81. doi: 10.1038/ng.464 19838196

7. Leipold E, Liebmann L, Korenke GC, Heinrich T, Giesselmann S, Baets J, et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet. 2013;45(11):1399–404. doi: 10.1038/ng.2767 24036948

8. Fridman V, Reilly MM. Inherited Neuropathies. Semin Neurol. 2015;35(4):407–23. doi: 10.1055/s-0035-1558981 26502764

9. Jiang T, Tan MS, Tan L, Yu JT. Application of next-generation sequencing technologies in Neurology. Ann Transl Med. 2014;2(12):125. PubMed Central PMCID: PMCPMC4260045. doi: 10.3978/j.issn.2305-5839.2014.11.11 25568878

10. Murphy SM, Laurá M, Reilly MM. DNA testing in hereditary neuropathies. Handb Clin Neurol. 2013;115:213–32. doi: 10.1016/B978-0-444-52902-2.00012-6 23931782

11. Shaibani A, Wong LJ, Wei Zhang V, Lewis RA, Shinawi M. Autosomal recessive posterior column ataxia with retinitis pigmentosa caused by novel mutations in the FLVCR1 gene. Int J Neurosci. 2015;125(1):43–9. doi: 10.3109/00207454.2014.904858 24628582

12. Yanatori I, Yasui Y, Miura K, Kishi F. Mutations of FLVCR1 in posterior column ataxia and retinitis pigmentosa result in the loss of heme export activity. Blood Cells Mol Dis. 2012;49(1):60–6. doi: 10.1016/j.bcmd.2012.03.004 22483575

13. Ishiura H, Fukuda Y, Mitsui J, Nakahara Y, Ahsan B, Takahashi Y, et al. Posterior column ataxia with retinitis pigmentosa in a Japanese family with a novel mutation in FLVCR1. Neurogenetics. 2011;12(2):117–21. doi: 10.1007/s10048-010-0271-4 21267618

14. Rajadhyaksha AM, Elemento O, Puffenberger EG, Schierberl KC, Xiang JZ, Putorti ML, et al. Mutations in FLVCR1 cause posterior column ataxia and retinitis pigmentosa. Am J Hum Genet. 2010;87(5):643–54. PubMed Central PMCID: PMCPMC2978959. doi: 10.1016/j.ajhg.2010.10.013 21070897

15. Higgins JJ, Morton DH, Loveless JM. Posterior column ataxia with retinitis pigmentosa (AXPC1) maps to chromosome 1q31-q32. Neurology. 1999;52(1):146–50. 9921862

16. Higgins JJ, Morton DH, Patronas N, Nee LE. An autosomal recessive disorder with posterior column ataxia and retinitis pigmentosa. Neurology. 1997;49(6):1717–20. 9409377

17. Quigley JG, Yang Z, Worthington MT, Phillips JD, Sabo KM, Sabath DE, et al. Identification of a human heme exporter that is essential for erythropoiesis. Cell. 2004;118(6):757–66. doi: 10.1016/j.cell.2004.08.014 15369674

18. Chiabrando D, Marro S, Mercurio S, Giorgi C, Petrillo S, Vinchi F, et al. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. J Clin Invest. 2012;122(12):4569–79. PubMed Central PMCID: PMCPMC3533534. doi: 10.1172/JCI62422 23187127

19. Pao SS, Paulsen IT, Saier MH. Major facilitator superfamily. Microbiol Mol Biol Rev. 1998;62(1):1–34. PubMed Central PMCID: PMCPMC98904. 9529885

20. Keel SB, Doty RT, Yang Z, Quigley JG, Chen J, Knoblaugh S, et al. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science. 2008;319(5864):825–8. doi: 10.1126/science.1151133 18258918

21. Vinchi F, Ingoglia G, Chiabrando D, Mercurio S, Turco E, Silengo L, et al. Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450. Gastroenterology. 2014;146(5):1325–38. PubMed Central PMCID: PMCPMC4000440. doi: 10.1053/j.gastro.2014.01.053 24486949

22. Fiorito V, Forni M, Silengo L, Altruda F, Tolosano E. Crucial role of Flvcr1a in the maintenance of intestinal heme homeostasis. Antioxid Redox Signal. 2015.

23. Mercurio S, Petrillo S, Chiabrando D, Bassi ZI, Gays D, Camporeale A, et al. Heme exporter Flvcr1 regulates expansion and differentiation of committed erythroid progenitors by controlling intracellular heme accumulation. Haematologica. 2015.

24. Philip M, Funkhouser SA, Chiu EY, Phelps SR, Delrow JJ, Cox J, et al. Heme exporter FLVCR is required for T cell development and peripheral survival. J Immunol. 2015;194(4):1677–85. PubMed Central PMCID: PMCPMC4323866. doi: 10.4049/jimmunol.1402172 25582857

25. Doty RT, Phelps SR, Shadle C, Sanchez-Bonilla M, Keel SB, Abkowitz JL. Coordinate expression of heme and globin is essential for effective erythropoiesis. J Clin Invest. 2015;125(12):4681–91. PubMed Central PMCID: PMCPMC4665774. doi: 10.1172/JCI83054 26551679

26. Chiabrando D, Vinchi F, Fiorito V, Mercurio S, Tolosano E. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front Pharmacol. 2014;5:61. PubMed Central PMCID: PMCPMC3986552. doi: 10.3389/fphar.2014.00061 24782769

27. Vallelian F, Deuel JW, Opitz L, Schaer CA, Puglia M, Lönn M, et al. Proteasome inhibition and oxidative reactions disrupt cellular homeostasis during heme stress. Cell Death Differ. 2015;22(4):597–611. PubMed Central PMCID: PMCPMC4356336. doi: 10.1038/cdd.2014.154 25301065

28. Higdon AN, Benavides GA, Chacko BK, Ouyang X, Johnson MS, Landar A, et al. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy. Am J Physiol Heart Circ Physiol. 2012;302(7):H1394–409. PubMed Central PMCID: PMCPMC3330785. doi: 10.1152/ajpheart.00584.2011 22245770

29. Itan Y, Shang L, Boisson B, Ciancanelli MJ, Markle JG, Martinez-Barricarte R, et al. The mutation significance cutoff: gene-level thresholds for variant predictions. Nat Methods. 2016;13(2):109–10. PubMed Central PMCID: PMCPMC4980758. doi: 10.1038/nmeth.3739 26820543

30. Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol. 2010;50:323–54. doi: 10.1146/annurev.pharmtox.010909.105600 20055707

31. Yang Z, Philips JD, Doty RT, Giraudi P, Ostrow JD, Tiribelli C, et al. Kinetics and specificity of feline leukemia virus subgroup C receptor (FLVCR) export function and its dependence on hemopexin. J Biol Chem. 2010;285(37):28874–82. PubMed Central PMCID: PMCPMC2937914. doi: 10.1074/jbc.M110.119131 20610401

32. Yang Z, Keel SB, Shimamura A, Liu L, Gerds AT, Li HY, et al. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome. Sci Transl Med. 2016;8(338):338ra67. PubMed Central PMCID: PMCPMC5010382. doi: 10.1126/scitranslmed.aaf3006 27169803

33. Mercurio S, Aspesi A, Silengo L, Altruda F, Dianzani I, Chiabrando D. Alteration of heme metabolism in a cellular model of Diamond-Blackfan anemia. Eur J Haematol. 2015.

34. Chen YC, Auer-Grumbach M, Matsukawa S, Zitzelsberger M, Themistocleous AC, Strom TM, et al. Transcriptional regulator PRDM12 is essential for human pain perception. Nat Genet. 2015;47(7):803–8. doi: 10.1038/ng.3308 26005867

35. Higgins JJ, Kluetzman K, Berciano J, Combarros O, Loveless JM. Posterior column ataxia and retinitis pigmentosa: a distinct clinical and genetic disorder. Mov Disord. 2000;15(3):575–8. 10830426

36. Kim HJ, Khalimonchuk O, Smith PM, Winge DR. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. Biochim Biophys Acta. 2012;1823(9):1604–16. PubMed Central PMCID: PMCPMC3601904. doi: 10.1016/j.bbamcr.2012.04.008 22554985

37. Moraes CT, Diaz F, Barrientos A. Defects in the biosynthesis of mitochondrial heme c and heme a in yeast and mammals. Biochim Biophys Acta. 2004;1659(2–3):153–9. doi: 10.1016/j.bbabio.2004.09.002 15576047

38. Hosler JP, Ferguson-Miller S, Mills DA. Energy transduction: proton transfer through the respiratory complexes. Annu Rev Biochem. 2006;75:165–87. PubMed Central PMCID: PMCPMC2659341. doi: 10.1146/annurev.biochem.75.062003.101730 16756489

39. Atamna H, Walter PB, Ames BN. The role of heme and iron-sulfur clusters in mitochondrial biogenesis, maintenance, and decay with age. Arch Biochem Biophys. 2002;397(2):345–53. doi: 10.1006/abbi.2001.2671 11795893

40. Smith AG, Raven EL, Chernova T. The regulatory role of heme in neurons. Metallomics. 2011;3(10):955–62. doi: 10.1039/c1mt00085c 21922110

41. Sahoo N, Hoshi T, Heinemann SH. Oxidative modulation of voltage-gated potassium channels. Antioxid Redox Signal. 2014;21(6):933–52. PubMed Central PMCID: PMCPMC4116129. doi: 10.1089/ars.2013.5614 24040918

42. Busserolles J, Tsantoulas C, Eschalier A, López García JA. Potassium channels in neuropathic pain: advances, challenges, and emerging ideas. Pain. 2016;157 Suppl 1:S7–S14.

43. Tsantoulas C, McMahon SB. Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci. 2014;37(3):146–58. PubMed Central PMCID: PMCPMC3945816. doi: 10.1016/j.tins.2013.12.002 24461875

44. Horrigan FT, Heinemann SH, Hoshi T. Heme regulates allosteric activation of the Slo1 BK channel. J Gen Physiol. 2005;126(1):7–21. PubMed Central PMCID: PMCPMC2266614. doi: 10.1085/jgp.200509262 15955873

45. Tang XD, Xu R, Reynolds MF, Garcia ML, Heinemann SH, Hoshi T. Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature. 2003;425(6957):531–5. doi: 10.1038/nature02003 14523450

46. Sahoo N, Goradia N, Ohlenschläger O, Schönherr R, Friedrich M, Plass W, et al. Heme impairs the ball-and-chain inactivation of potassium channels. Proc Natl Acad Sci U S A. 2013;110(42):E4036–44. PubMed Central PMCID: PMCPMC3801010. doi: 10.1073/pnas.1313247110 24082096

47. Fan W, Huang F, Wu Z, Zhu X, Li D, He H. Carbon monoxide: a gas that modulates nociception. J Neurosci Res. 2011;89(6):802–7. doi: 10.1002/jnr.22613 21425317

48. Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int J Endocrinol. 2014;2014:674987. PubMed Central PMCID: PMCPMC4021687. doi: 10.1155/2014/674987 24883061

49. Figueroa-Romero C, Sadidi M, Feldman EL. Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord. 2008;9(4):301–14. PubMed Central PMCID: PMCPMC4239697. doi: 10.1007/s11154-008-9104-2 18709457

50. Carozzi VA, Canta A, Chiorazzi A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci Lett. 2015;596:90–107. doi: 10.1016/j.neulet.2014.10.014 25459280

51. Saad M, Tafani C, Psimaras D, Ricard D. Chemotherapy-induced peripheral neuropathy in the adult. Curr Opin Oncol. 2014;26(6):634–41. doi: 10.1097/CCO.0000000000000139 25229554

52. Sinclair PR, Gorman N, Jacobs JM. Measurement of heme concentration. Curr Protoc Toxicol. 2001;Chapter 8:Unit 8.3.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2016 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#