#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Variation in Rural African Gut Microbiota Is Strongly Correlated with Colonization by and Subsistence


The community of microorganisms inhabiting the gastrointestinal tract plays a critical role in determining human health. It’s been hypothesized that the industrialized lifestyle, marked by a diet rich in processed foods, higher use of antibiotics, increased hygiene, and exposure to various chemicals, has altered microbiota in ways that are harmful. Studies have addressed this by comparing rural and industrialized populations, and have found that they systematically vary in their gut microbiome composition. Nevertheless, the relative influence of host genetics, diet, climate, medication, hygiene practices, and parasitism is still not clear. In addition, microbial variation between nearby human populations has not been explored in depth. Moreover, The World Health Organization estimates that 24% of the world’s population, concentrated in developing countries, is infected with gut parasites. Despite this, and evidence for direct interactions between the immune system and both gut parasites and bacteria, we know relatively little about the relationship between gut helminths, protozoa, and bacteria. In our study, we aimed to address some of this complexity. To do so, we characterized the gut microbial communities and parasites from Pygmy hunter-gatherer and Bantu farming and fishing populations from seven locations in the rainforest of Southwest Cameroon. We found that both subsistence mode and the presence of the gut protozoa, Entamoeba, were significantly correlated with microbiome composition. These findings support previous studies demonstrating diet is an important determinant of gut microbiota, and further show that this pattern holds true at a local scale, in traditional societies inhabiting a similar environment. Additionally, we show a significant relationship between a common human parasite (Entamoeba) and gut bacterial community composition, suggesting potential important interactions between the immune system, gut bacteria, and gut parasites, highlighting the need for more hierarchical cross population studies that include parasitism as potential factor influencing gut microbiota dynamics.


Vyšlo v časopise: Variation in Rural African Gut Microbiota Is Strongly Correlated with Colonization by and Subsistence. PLoS Genet 11(11): e32767. doi:10.1371/journal.pgen.1005658
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005658

Souhrn

The community of microorganisms inhabiting the gastrointestinal tract plays a critical role in determining human health. It’s been hypothesized that the industrialized lifestyle, marked by a diet rich in processed foods, higher use of antibiotics, increased hygiene, and exposure to various chemicals, has altered microbiota in ways that are harmful. Studies have addressed this by comparing rural and industrialized populations, and have found that they systematically vary in their gut microbiome composition. Nevertheless, the relative influence of host genetics, diet, climate, medication, hygiene practices, and parasitism is still not clear. In addition, microbial variation between nearby human populations has not been explored in depth. Moreover, The World Health Organization estimates that 24% of the world’s population, concentrated in developing countries, is infected with gut parasites. Despite this, and evidence for direct interactions between the immune system and both gut parasites and bacteria, we know relatively little about the relationship between gut helminths, protozoa, and bacteria. In our study, we aimed to address some of this complexity. To do so, we characterized the gut microbial communities and parasites from Pygmy hunter-gatherer and Bantu farming and fishing populations from seven locations in the rainforest of Southwest Cameroon. We found that both subsistence mode and the presence of the gut protozoa, Entamoeba, were significantly correlated with microbiome composition. These findings support previous studies demonstrating diet is an important determinant of gut microbiota, and further show that this pattern holds true at a local scale, in traditional societies inhabiting a similar environment. Additionally, we show a significant relationship between a common human parasite (Entamoeba) and gut bacterial community composition, suggesting potential important interactions between the immune system, gut bacteria, and gut parasites, highlighting the need for more hierarchical cross population studies that include parasitism as potential factor influencing gut microbiota dynamics.


Zdroje

1. Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proceedings of the National Academy of Sciences 109: 594–599.

2. Consortium HMP (2012) Structure, function and diversity of the healthy human microbiome. Nature 486: 207–214. doi: 10.1038/nature11234 22699609

3. Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D, et al. (2013) Stool substitute transplant therapy for the eradication of Clostridium difficile infection:‘RePOOPulating’the gut. Microbiome 1: 1–12.

4. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, et al. (2013) Diet rapidly and reproducibly alters the human gut microbiome. Nature.

5. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, et al. (2014) Human genetics shape the gut microbiome. Cell 159: 789–799. doi: 10.1016/j.cell.2014.09.053 25417156

6. Knights D, Lassen KG, Xavier RJ (2013) Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut 62: 1505–1510. doi: 10.1136/gutjnl-2012-303954 24037875

7. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Reviews Microbiology 9: 279–290. doi: 10.1038/nrmicro2540 21407244

8. Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, et al. (2014) Host genetic variation impacts microbiome composition across human body sites. Genome Biology 16: 1–12.

9. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, et al. (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences 107: 11971–11975.

10. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, et al. (2007) The Human Microbiome Project. Nature 449: 804–810. 17943116

11. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nature Reviews Genetics 13: 260–270. doi: 10.1038/nrg3182 22411464

12. Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, et al. (2004) Genetic signatures of strong recent positive selection at the lactase gene. The American Journal of Human Genetics 74: 1111–1120. 15114531

13. Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, et al. (2007) Diet and the evolution of human amylase gene copy number variation. Nature genetics 39: 1256–1260. 17828263

14. Kwiatkowski DP (2005) How malaria has affected the human genome and what human genetics can teach us about malaria. The American Journal of Human Genetics 77: 171–192. 16001361

15. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, et al. (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences 107: 14691–14696.

16. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, et al. (2012) Human gut microbiome viewed across age and geography. Nature 486: 222-+. doi: 10.1038/nature11053 22699611

17. Lin A, Bik EM, Costello EK, Dethlefsen L, Haque R, et al. (2013) Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. Plos One 8: e53838. doi: 10.1371/journal.pone.0053838 23349750

18. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, et al. (2014) Gut microbiome of the Hadza hunter-gatherers. Nature communications 5.

19. Rampelli S, Schnorr SL, Consolandi C, Turroni S, Severgnini M, et al. (2015) Metagenome Sequencing of the Hadza Hunter-Gatherer Gut Microbiota. Current Biology.

20. Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC, et al. (2015) Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun 6.

21. Nakayama J, Watanabe K, Jiang J, Matsuda K, Chao S- H, et al. (2015) Diversity in gut bacterial community of school-age children in Asia. Scientific reports 5.

22. Sonnenburg ED, Sonnenburg JL (2014) Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell metabolism 20: 779–786. doi: 10.1016/j.cmet.2014.07.003 25156449

23. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, et al. (2015) The microbiome of uncontacted Amerindians. Science Advances 1: e1500183. 26229982

24. Zhang J, Guo Z, Lim AAQ, Zheng Y, Koh EY, et al. (2014) Mongolians core gut microbiota and its correlation with seasonal dietary changes. Scientific reports 4.

25. Dethlefsen L, Relman D (2010) Microbes and health sackler colloquium: incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 108: 4516–4522.

26. Martínez I, Stegen JC, Maldonado-Gómez MX, Eren AM, Siba PM, et al. (2015) The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell reports 11: 527–538. doi: 10.1016/j.celrep.2015.03.049 25892234

27. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, et al. (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13: R79. doi: 10.1186/gb-2012-13-9-r79 23013615

28. Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T, et al. (2015) The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes. Cell Host & Microbe 17: 260–273.

29. Elliott DE, Summers RW, Weinstock JV (2007) Helminths as governors of immune-mediated inflammation. International journal for parasitology 37: 457–464. 17313951

30. Organization WH (1987) Prevention and control of intestinal parasitic infections: report of a WHO Expert Committee [meeting held in Geneva from 3 to 7 March 1986].

31. Kay GL, Millard A, Sergeant MJ, Midzi N, Gwisai R, et al. (2015) Differences in the faecal microbiome in Schistosoma haematobium infected children vs. uninfected children. PLoS Negl Trop Dis 9: e0003861. doi: 10.1371/journal.pntd.0003861 26114287

32. Fumagalli M, Pozzoli U, Cagliani R, Comi GP, Riva S, et al. (2009) Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. The Journal of experimental medicine 206: 1395–1408. doi: 10.1084/jem.20082779 19468064

33. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA (2012) The Application of Ecological Theory Toward an Understanding of the Human Microbiome. Science 336: 1255–1262. doi: 10.1126/science.1224203 22674335

34. Buffie CG, Pamer EG (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nature Reviews Immunology 13: 790–801. doi: 10.1038/nri3535 24096337

35. Hayes KS, Bancroft AJ, Goldrick M, Portsmouth C, Roberts IS, et al. (2010) Exploitation of the Intestinal Microflora by the Parasitic Nematode Trichuris muris. Science 328: 1391–1394. doi: 10.1126/science.1187703 20538949

36. Okada H, Kuhn C, Feillet H, Bach JF (2010) The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clinical & Experimental Immunology 160: 1–9.

37. Maizels RM, McSorley HJ, Smyth DJ (2014) Helminths in the hygiene hypothesis: sooner or later? Clinical & Experimental Immunology 177: 38–46.

38. Koppert GJ, Dounias E, Froment A, Pasquet P (1993) Food consumption in three forest populations of the southern coastal area of Cameroon: Yassa-Mvae-Bakola. Man and the Biosphere Series 13: 295–295.

39. Verdu P, Austerlitz F, Estoup A, Vitalis R, Georges M, et al. (2009) Origins and genetic diversity of pygmy hunter-gatherers from Western Central Africa. Current Biology 19: 312–318. doi: 10.1016/j.cub.2008.12.049 19200724

40. Patin E, Laval G, Barreiro LB, Salas A, Semino O, et al. (2009) Inferring the demographic history of African farmers and Pygmy hunter–gatherers using a multilocus resequencing data set. PLoS Genetics 5: e1000448. doi: 10.1371/journal.pgen.1000448 19360089

41. Diamond J, Bellwood P (2003) Farmers and their languages: the first expansions. Science 300: 597–603. 12714734

42. Froment A, Ambrose SH (1995) Analyses tissulaires isotopiques et reconstruction du régime alimentaire en milieu tropical: implications pour l'archéologie. Bulletins et Mémoires de la Société d'Anthropologie de Paris 7: 79–98.

43. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. The ISME journal 5: 169. doi: 10.1038/ismej.2010.133 20827291

44. Karagiannis-Voules D-A, Biedermann P, Ekpo UF, Garba A, Langer E, et al. (2015) Spatial and temporal distribution of soil-transmitted helminth infection in sub-Saharan Africa: a systematic review and geostatistical meta-analysis. The Lancet Infectious Diseases 15: 74–84. doi: 10.1016/S1473-3099(14)71004-7 25486852

45. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological): 289–300.

46. Geissinger O, Herlemann DP, Mörschel E, Maier UG, Brune A (2009) The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Applied and Environmental Microbiology 75: 2831–2840. doi: 10.1128/AEM.02697-08 19270135

47. Evans NJ, Brown JM, Murray RD, Getty B, Birtles RJ, et al. (2011) Characterization of novel bovine gastrointestinal tract Treponema isolates and comparison with bovine digital dermatitis treponemes. Applied and Environmental Microbiology 77: 138–147. doi: 10.1128/AEM.00993-10 21057019

48. Gomez A, Petrzelkova K, Yeoman CJ, Burns MB, Amato KR, et al. (2015) Ecological and evolutionary adaptations shape the gut microbiome of BaAka African rainforest hunter-gatherers. bioRxiv: 019232.

49. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 28: 27–30. 10592173

50. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, et al. (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature biotechnology 31: 814–821. doi: 10.1038/nbt.2676 23975157

51. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, et al. (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488: 621–626. doi: 10.1038/nature11400 22914093

52. Meehan CJ, Beiko RG (2014) A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biology and Evolution 6: 703–713. doi: 10.1093/gbe/evu050 24625961

53. Ze X, Duncan SH, Louis P, Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. The ISME journal 6: 1535–1543. doi: 10.1038/ismej.2012.4 22343308

54. Anthony RM, Rutitzky LI, Urban JF, Stadecker MJ, Gause WC (2007) Protective immune mechanisms in helminth infection. Nature Reviews Immunology 7: 975–987. 18007680

55. Fleming J, Weinstock J (2015) Clinical Trials of Helminth Therapy in Autoimmune Diseases: Rationale and Findings. Parasite Immunology.

56. Round JL, O'Connell RM, Mazmanian SK (2010) Coordination of tolerogenic immune responses by the commensal microbiota. Journal of autoimmunity 34: J220–J225. doi: 10.1016/j.jaut.2009.11.007 19963349

57. Kinross JM, Darzi AW, Nicholson JK (2011) Gut microbiome-host interactions in health and disease. Genome Med 3: 14. doi: 10.1186/gm228 21392406

58. Pagliari D, Piccirillo CA, Larbi A, Cianci R (2015) The Interactions between Innate Immunity and Microbiota in Gastrointestinal Diseases. Journal of Immunology Research 2015.

59. Blaser MJ, Falkow S (2009) What are the consequences of the disappearing human microbiota? Nature Reviews Microbiology 7: 887–894. doi: 10.1038/nrmicro2245 19898491

60. Segata N (2015) Gut Microbiome: Westernization and the Disappearance of Intestinal Diversity. Current Biology 25: R611–R613. doi: 10.1016/j.cub.2015.05.040 26196489

61. McGrady-Steed J, Morin PJ (2000) Biodiversity, density compensation, and the dynamics of populations and functional groups. Ecology 81: 361–373.

62. McCann KS (2000) The diversity–stability debate. Nature 405: 228–233. 10821283

63. Tilman D, Downing JA (1996) Biodiversity and stability in grasslands. Ecosystem Management: Springer. pp. 3–7.

64. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, et al. (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2: e01202. doi: 10.7554/eLife.01202 24192039

65. McCoy AN, Araujo-Perez F, Azcarate-Peril A, Yeh JJ, Sandler RS, et al. (2013) Fusobacterium is associated with colorectal adenomas. Plos One 8: e53653. doi: 10.1371/journal.pone.0053653 23335968

66. Burns MB, Lynch J, Starr TK, Knights D, Blekhman R (2014) Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. bioRxiv: 009431.

67. Nsubuga AM, Robbins MM, Roeder AD, Morin PA, Boesch C, et al. (2004) Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Molecular Ecology 13: 2089–2094. 15189228

68. Cai L, Ye L, Tong AHY, Lok S, Zhang T (2013) Biased diversity metrics revealed by bacterial 16S pyrotags derived from different primer sets. Plos One 8: e53649. doi: 10.1371/journal.pone.0053649 23341963

69. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17: pp. 10–12.

70. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957–2963. doi: 10.1093/bioinformatics/btr507 21903629

71. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7: 335–336. doi: 10.1038/nmeth.f.303 20383131

72. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, et al. (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME journal 6: 610–618. doi: 10.1038/ismej.2011.139 22134646

73. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological conservation 61: 1–10.

74. Shannon CE (2001) A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review 5: 3–55.

75. Simpson EH (1949) Measurement of diversity. Nature.

76. Anderson MJ (2005) Permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland.

77. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. (2013) Package ‘vegan’. Community ecology package, version 2.

78. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, et al. (2011) Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research 12: 2825–2830.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#