#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Controls Quantitative Variation in Maize Kernel Row Number


Maize (Zea mays L.
) is one of the world's most important sources of calories for humans. With an expanding global population, the demands for maize-derived food, feed, and fuel are rapidly increasing. To meet these needs, geneticists and breeders are facing the challenge of enhancing grain yield through genetic improvement of maize germplasm. Understanding the genetic basis of grain yield is necessary to guide breeding efforts towards the development of high-yielding hybrids. Kernel row number (KRN) in maize is one of the most important yield components and a significant breeding target. Over the last few decades, many genes that determine inflorescence development and architecture have been identified and characterized. The formation of kernel rows is an integral part of the development of the female inflorescence in maize. Nevertheless, the genetic basis and molecular regulation of quantitative variation in KRN is poorly understood. This study provides experimental evidence for the hypothesis that variation in intergenic regions can regulate quantitative variation of important grain yield-related traits, and also provides tools for improving KRN in maize.


Vyšlo v časopise: Controls Quantitative Variation in Maize Kernel Row Number. PLoS Genet 11(11): e32767. doi:10.1371/journal.pgen.1005670
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005670

Souhrn

Maize (Zea mays L.
) is one of the world's most important sources of calories for humans. With an expanding global population, the demands for maize-derived food, feed, and fuel are rapidly increasing. To meet these needs, geneticists and breeders are facing the challenge of enhancing grain yield through genetic improvement of maize germplasm. Understanding the genetic basis of grain yield is necessary to guide breeding efforts towards the development of high-yielding hybrids. Kernel row number (KRN) in maize is one of the most important yield components and a significant breeding target. Over the last few decades, many genes that determine inflorescence development and architecture have been identified and characterized. The formation of kernel rows is an integral part of the development of the female inflorescence in maize. Nevertheless, the genetic basis and molecular regulation of quantitative variation in KRN is poorly understood. This study provides experimental evidence for the hypothesis that variation in intergenic regions can regulate quantitative variation of important grain yield-related traits, and also provides tools for improving KRN in maize.


Zdroje

1. Doebley J. The genetics of maize evolution. Ann Rev Genet. 2004; 38: 37–59. 15568971

2. Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, et al. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet. 2011; 7:e1002383. doi: 10.1371/journal.pgen.1002383 22125498

3. Lei L, Yanfang D, Dongao H, Man W, Shen X, Bing Y, et al. Genetic architecture of maize kernel row number and whole genome prediction. Theor Appl Genet. 2015.

4. Vollbrecht E, Schmidt RJ. Development of the inflorescences. In: Bennetzen, JL Hake, SC, editors. Handbook of Maize: Its Biology, eds New York: Springer; 2009. pp.; 13–40.

5. Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W. thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development. 2005; 132: 1235–45. 15716347

6. Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev. 2001; 15: 2755–2766. 11641280

7. Bommert P, Nagasawa NS, Jackson D. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet. 2013; 45(3): 334–337. doi: 10.1038/ng.2534 23377180

8. Bommert P, Je BI, Goldshmidt A, Jackson D. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature. 2013; 502: 555–558. doi: 10.1038/nature12583 24025774

9. McSteen P. Branching out: the ramosa pathway and the evolution of grass inflorescence morphology. Plant Cell. 2006; 18(3): 518–522. 16513602

10. Chuck G, Cigan AM, Saeteurn K, Hake S. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet. 2007; 39(4): 544–549. 17369828

11. Chuck G, Whipple C, Jackson D, Hake S. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development. 2010; 137: 1243–1250. doi: 10.1242/dev.048348 20223762

12. Bomblies K1, Doebley JF. Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication. Genetics. 2006; 172: 519–531. 16204211

13. Chuck GS, Brown PJ, Meeley R, Hake S. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci USA. 2014; 111(52): 18775–18780. doi: 10.1073/pnas.1407401112 25512525

14. Yang X, Gao S, Xu S, Zhang Z, Prasanna B M, Li L, et al. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed. 2011; 28: 511–526.

15. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006; 38: 203–208. 16380716

16. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007; 23: 2633–2635. 17586829

17. Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, et al. The origin of the naked grains of maize. Nature. 2005; 436: 714–719. 16079849

18. Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet. 2011; 43: 1160–1163. doi: 10.1038/ng.942 21946354

19. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet. 2010; 42: 541–545. doi: 10.1038/ng.591 20495565

20. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. 2010; Nat Genet. 42: 545–549. doi: 10.1038/ng.592 20495564

21. Robbins ML, Sekhon RS, Meeley R, Chopra S. A Mutator transposon insertion is associated with ectopic expression of a tandemly repeated multicopy Myb gene pericarp color1 of maize. Genetics. 2008; 178: 1859–1874.A Mutator transposon insertion is associated with ectopic expression of a tandemly repeated multicopy Myb gene doi: 10.1534/genetics.107.082503 18430921

22. Lu Z, Yu H, Xiong G, Wang J, Jiao Y, Liu G, et al. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. Plant Cell. 2013; 25: 3743–3759. doi: 10.1105/tpc.113.113639 24170127

23. Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, et al. The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 2003; 33: 513–520. 12581309

24. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet. 2009; 41: 494–497. doi: 10.1038/ng.352 19305410

25. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA. 2007; 104: 11376–11381. 17595297

26. Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, et al. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci USA. 2012; 109: E1913–1921. doi: 10.1073/pnas.1203189109 22711828

27. Yang Q, Li Z, Li W, Ku L, Wang C, Ye J, et al. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci USA. 2013; 110: 16969–16974. doi: 10.1073/pnas.1310949110 24089449

28. Wills DM, Whipple CJ, Takuno S, Kursel LE, Shannon LM, et al. From Many, One: Genetic Control of Prolificacy during Maize Domestication. PLoS Genet. 2013; 9(6): e1003604. doi: 10.1371/journal.pgen.1003604 23825971

29. Arteaga-Vazquez M, Sidorenko L, Rabanal FA, Shrivistava R, Nobuta K, Green PJ, et al. RNA-mediated trans-communication can establish paramutation at the b1 locus in maize. Proc Natl Acad Sci U S A. 2010; 107(29): 12986–91. doi: 10.1073/pnas.1007972107 20616013

30. Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006; 127: 1309–1321. 17190597

31. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet. 2013; 45: 43–50. doi: 10.1038/ng.2484 23242369

32. SAS Institute 2001. SAS/STAT User’s Guide v. 8.2. SAS Institute, Cary, N.C.,

33. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics. 2005; 21: 263–5. 15297300

34. Paterson AH, DeVerna JW, Lanini B, Tanksley SD. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics. 1990; 124:735–742. 1968874

35. McCarty DR, Settles AM, Suzuki M, Tan BC, Latshaw S, Porch T, et al. Steady-state transposon mutagenesis in inbred maize. Plant J. 2005; 44: 52–61. 16167895

36. Wen W, Franco J, Chavez-Tovar VH, Yan J, Taba S. Genetic characterization of a core set of a tropical maize race Tuxpeño for further use in maize improvement. PLoS One. 2012;7(3):e32626. doi: 10.1371/journal.pone.0032626 22412898

37. Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009; 25: 1451–1452. doi: 10.1093/bioinformatics/btp187 19346325

38. Eyre Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS. Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci U S A. 1998; 95: 4441–4446. 9539756

39. Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A. 2001;98: 9161–9166. 11470895

40. Tenaillon MI, U’Ren J, Tenaillon O, Gaut BS. Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol. 2004; 21: 1214–25. 15014173

41. White SE, Doebley JF. The molecular evolution of terminal ear1, a regulatory gene in the genus Zea. Genetics. 1999; 153: 1455–1462. 10545473

42. Hudson RR, And MK, Aguadé M. A Test of Neutral Molecular Evolution Based on Nucleotide Data. Genetics. 1987; 116: 153–159. 3110004

43. Yang Z, Wang X, Gu S, Hu Z, Xu H, Xu C. Comparative study of SBP-box gene family in Arabidopsis and rice. Gene. 2008; 407: 1–11. 17629421

44. Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, et al. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010; 463: 763–768. doi: 10.1038/nature08747 20148030

45. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009; 457: 551–556. doi: 10.1038/nature07723 19189423

46. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, et al. A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science. 2002; 296: 92–100. 11935018

47. Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol. 2012; 30: 549–554. doi: 10.1038/nbt.2195 22580950

48. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009; 326: 1112–1115. doi: 10.1126/science.1178534 19965430

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#