#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Insect Resistance to Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein


Transgenic crops expressing the insecticidal protein Cry2Ab from Bacillus thuringiensis (Bt) are used worldwide to suppress damage by lepidopteran pests, often used in combination with Cry1Ac toxin to delay resistance evolution. Until now, the Cry2Ab mode of action and the mechanism of resistance were unknown, with field-isolated Cry2Ab resistant Helicoverpa armigera showing no cross-resistance to Cry1Ac. In this study, biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by EPIC marker mapping and candidate gene sequencing identified three independent INDEL mutations in an ATP-Binding Cassette transporter subfamily A gene (ABCA2). A deletion mutation was identified in the same gene of resistant H. punctigera. All four mutations are predicted to truncate the ABCA2 protein. This is the first molecular genetic characterization of insect resistance to the Cry2Ab toxin, and detection of diverse Cry2Ab resistance alleles will contribute to understanding the micro-evolutionary processes that underpinned lepidopteran Bt-resistance.


Vyšlo v časopise: Insect Resistance to Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein. PLoS Genet 11(11): e32767. doi:10.1371/journal.pgen.1005534
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005534

Souhrn

Transgenic crops expressing the insecticidal protein Cry2Ab from Bacillus thuringiensis (Bt) are used worldwide to suppress damage by lepidopteran pests, often used in combination with Cry1Ac toxin to delay resistance evolution. Until now, the Cry2Ab mode of action and the mechanism of resistance were unknown, with field-isolated Cry2Ab resistant Helicoverpa armigera showing no cross-resistance to Cry1Ac. In this study, biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by EPIC marker mapping and candidate gene sequencing identified three independent INDEL mutations in an ATP-Binding Cassette transporter subfamily A gene (ABCA2). A deletion mutation was identified in the same gene of resistant H. punctigera. All four mutations are predicted to truncate the ABCA2 protein. This is the first molecular genetic characterization of insect resistance to the Cry2Ab toxin, and detection of diverse Cry2Ab resistance alleles will contribute to understanding the micro-evolutionary processes that underpinned lepidopteran Bt-resistance.


Zdroje

1. Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J. 2011;9(3):283–300. doi: 10.1111/J.1467-7652.2011.00595.X ISI:000288630900001. 21375687

2. Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P, dos Santos AC, et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 2014;64:150–8. WOS:000341470000021.

3. Gassmann AJ, Petzold-Maxwell JL, Clifton EH, Dunbar MW, Hoffmann AM, Ingber DA, et al. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. P Natl Acad Sci USA. 2014;111(14):5141–6. doi: 10.1073/Pnas.1317179111 WOS:000333985200034.

4. Tabashnik BE, Brevault T, Carriere Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol. 2013;31(6):510–21. doi: 10.1038/nbt.2597 23752438.

5. Mitter C, Poole RW, Matthews M. Biosystematics of the Heliothinae (Lepidoptera, Noctuidae). Annu Rev Entomol. 1993;38:207–25. WOS:A1993KF69700010.

6. Matthews M. Heliothine Moths of Australia. Melbourne: CSIRO Publishing; 1999. x+320 p.

7. Hardwick DF. The Corn Earworm complex. Mem Entomol Soc Can. 1965;40:1–248.

8. Behere GT, Tay WT, Russell DA, Heckel DG, Appleton BR, Kranthi KR, et al. Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea. BMC Evol Biol. 2007;7:117.

9. Downes S, Parker T, Mahon R. Incipient Resistance of Helicoverpa punctigera to the Cry2Ab Bt Toxin in Bollgard II® Cotton. PLoS One. 2010;5(9):e12567. doi: 10.1371/journal.pone.0012567 ISI:000281631300007. 20830203

10. Downes S, Parker TL, Mahon RJ. Characteristics of resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa punctigera (Lepidoptera: Noctuidae) isolated from a field population. J Econ Entomol. 2010;103(6):2147–54. ISI:000286845900027. 21309238

11. Xu XJ, Yu LY, Wu YD. Disruption of a cadherin gene associated with resistance to Cry1Ac δ-Endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microb. 2005;71(2):948–54. ISI:000227043400045.

12. Yang YJ, Chen HY, Wu SW, Yang YH, Xu XJ, Wu YD. Identification and molecular detection of a deletion mutation responsible for a truncated cadherin of Helicoverpa armigera. Insect Biochem Molec. 2006;36(9):735–40. doi: 10.1016/J.Ibmb.2006.06.003 ISI:000240783300006.

13. Zhao J, Jin L, Yang YH, Wu YD. Diverse cadherin mutations conferring resistance to Bacillus thuringiensis toxin Cry1Ac in Helicoverpa armigera. Insect Biochem Molec. 2010;40(2):113–8. doi: 10.1016/J.Ibmb.2010.01.001 ISI:000275972800003.

14. Dhurua S, Gujar GT. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag Sci. 2011;67(8):898–903. doi: 10.1002/Ps.2127 WOS:000293327300004. 21438121

15. Burd AD, Gould F, Bradley JR, Van Duyn JW, Moar WJ. Estimated frequency of nonrecessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in eastern North Carolina. J Econ Entomol. 2003;96(1):137–42. ISI:000180967000020. 12650356

16. Anilkumar KJ, Rodrigo-Simon A, Ferre J, Pusztai-Carey M, Sivasupramaniam S, Moar WJ. Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie). Appl Environ Microb. 2008;74(2):462–9. ISI:000252453100016.

17. Tabashnik BE, Gassmann AJ, Crowder DW, Carriere Y. Insect resistance to Bt crops: evidence versus theory. Nature Biotechnol. 2008;26(2):199–202. doi: 10.1038/nbt1382 WOS:000253193000021.

18. Heckel DG, Gahan LJ, Liu YB, Tabashnik BE. Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis. P Natl Acad Sci USA. 1999;96(15):8373–7. doi: 10.1073/Pnas.96.15.8373 ISI:000081589400019.

19. Griffitts JS, Whitacre JL, Stevens DE, Aroian RV. Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science. 2001;293(5531):860–4. doi: 10.1126/science.1062441 WOS:000170241000044. 11486087

20. Gonzalez-Cabrera J, Farinos GP, Caccia S, Diaz-Mendoza M, Castanera P, Leonardi MG, et al. Toxicity and mode of action of Bacillus thuringiensis Cry proteins in the Mediterranean corn borer, Sesamia nonagrioides (Lefebvre). Appl Environ Microb. 2006;72(4):2594–600. ISI:000236749400041.

21. Caccia S, Hernandez-Rodriguez CS, Mahon RJ, Downes S, James W, Bautsoens N, et al. Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species. PLoS One. 2010;5(3):e9975. doi: 10.1371/journal.pone.0009975 ISI:000276418200048.

22. Gouffon C, Van Vliet A, Van Rie J, Jansens S, Jurat-Fuentes JL. Binding sites for Bacillus thuringiensis Cry2Ae toxin on Heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Appl Environ Microb. 2011;77(10):3182–8. doi: 10.1128/Aem.02791-10 ISI:000290473200003.

23. Jurat-Fuentes JL, Karumbaiah L, Jakka SRK, Ning CM, Liu CX, Wu KM, et al. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. PLoS One. 2011;6(3):e17606. doi: 10.1371/journal.pone.0017606 ISI:000287932100025. 21390253

24. Heckel DG, Gahan LJ, Baxter SW, Zhao JZ, Shelton AM, Gould F, et al. The diversity of Bt resistance genes in species of Lepidoptera. J Invertebr Pathol. 2007;95(3):192–7. doi: 10.1016/J.Jip.2007.03.008 ISI:000247850700008. 17482643

25. Bravo A, Likitvivatanavong S, Gill SS, Soberon M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem Molec. 2011;41(7):423–31. doi: 10.1016/J.Ibmb.2011.02.006 ISI:000293041200002.

26. Vachon V, Laprade R, Schwartz JL. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. J Invertebr Pathol. 2012;111(1):1–12. doi: 10.1016/J.Jip.2012.05.001 ISI:000307797300001. 22617276

27. Gahan LJ, Gould F, Heckel DG. Identification of a gene associated with Bt resistance in Heliothis virescens. Science. 2001;293:857–60. 11486086

28. Morin S, Biggs RW, Sisterson MS, Shriver L, Ellers-Kirk C, Higginson D, et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. P Natl Acad Sci USA. 2003;100(9):5004–9. doi: 10.1073/Pnas.0831036100 ISI:000182612600010.

29. Yang YJ, Chen HY, Wu YD, Yang YH, Wu SW. Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac. Appl Environ Microb. 2007;73(21):6939–44. doi: 10.1128/Aem.01703-07 ISI:000250700600028.

30. Fabrick JA, Mathew LG, Tabashnik BE, Li X. Insertion of an intact CR1 retrotransposon in a cadherin gene linked with Bt resistance in the pink bollworm, Pectinophora gossypiella. Insect Mol Biol. 2011;20(5):651–65. doi: 10.1111/J.1365-2583.2011.01095.X ISI:000295089500009. 21815956

31. Liu CX, Xiao YT, Li XC, Oppert B, Tabashnik BE, Wu KM. Cis-mediated down-regulation of a trypsin gene associated with Bt resistance in cotton bollworm. Sci Rep. 2014;4:7219. doi: 10.1038/Srep07219 WOS:000346252800002. 25427690

32. Xiao Y, Zhang T, Liu C, Heckel DG, Li X, Tabashnik BE, et al. Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera. Sci Rep. 2014;4:6184. doi: 10.1038/srep06184 25154974; PubMed Central PMCID: PMCPMC4143771.

33. Zhang SP, Cheng HM, Gao YL, Wang GR, Liang GM, Wu KM. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochem Molec. 2009;39(7):421–9. doi: 10.1016/J.Ibmb.2009.04.003 ISI:000267790700001.

34. Gahan LJ, Pauchet Y, Vogel H, Heckel DG. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet. 2010;6(12):e1001248. doi: 10.1371/journal.pgen.1001248 21187898; PubMed Central PMCID: PMCPMC3002984.

35. Baxter SW, Badenes-Perez FR, Morrison A, Vogel H, Crickmore N, Kain W, et al. Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics. 2011;189(2):675–9. doi: 10.1534/Genetics.111.130971 ISI:000296158500022. 21840855

36. Atsumi S, Miyamoto K, Yamamoto K, Narukawa J, Kawai S, Sezutsu H, et al. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. P Natl Acad Sci USA. 2012;109(25):E1591–E8. doi: 10.1073/pnas.1120698109 WOS:000306061400005.

37. Park Y, Gonzalez-Martinez RM, Navarro-Cerrillo G, Chakroun M, Kim Y, Ziarsolo P, et al. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. BMC Biol. 2014;12:46. doi: 10.1186/1741-7007-12-46 24912445; PubMed Central PMCID: PMCPMC4071345.

38. Tanaka S, Miyamoto K, Noda H, Jurat-Fuentes JL, Yoshizawa Y, Endo H, et al. The ATP-binding cassette transporter subfamily C member 2 in Bombyx mori larvae is a functional receptor for Cry toxins from Bacillus thuringiensis. FEBS Journal. 2013;280(8):1782–94. doi: 10.1111/febs.12200 WOS:000317609000005. 23432933

39. Heckel DG. Learning the ABCs of Bt: ABC transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action. Pestic Biochem Phys. 2012;104(2):103–10. doi: 10.1016/J.Pestbp.2012.05.007 ISI:000311068900005.

40. Tabashnik BE, Unnithan GC, Masson L, Crowder DW, Li X, Carriere Y. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm. Proc Natl Acad Sci U S A. 2009;106(29):11889–94. doi: 10.1073/pnas.0901351106 19581574; PubMed Central PMCID: PMCPMC2706268.

41. Tabashnik BE, Carriere Y. Field-evolved resistance to Bt cotton: bollworm in the U.S. and pink bollworm in India. Southwest Entomol. 2010;35(3):417–24. doi: 10.3958/059.035.0326 ISI:000284301400025.

42. Mahon RJ, Olsen KM, Garsia KA, Young SR. Resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia. J Econ Entomol. 2007;100(3):894–902. ISI:000246950300034. 17598553

43. Downes S, Parker TL, Mahon RJ. Frequency of alleles conferring resistance to the Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in Australian populations of Helicoverpa punctigera (Lepidoptera: Noctuidae) from 2002 to 2006. J Econ Entomol. 2009;102(2):733–42. ISI:000264899500035. 19449655

44. Andow DA, Alstad DN. F2 screen for rare resistance alleles. J Econ Entomol. 1998;91(3):572–8. ISI:000074273400003.

45. Gould F, Anderson A, Jones A, Sumerford D, Heckel DG, Lopez J, et al. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. P Natl Acad Sci USA. 1997;94(8):3519–23. 11038613; PubMed Central PMCID: PMC20471.

46. Liu F, Xu Z, Chang J, Chen J, Meng F, Zhu YC, et al. Resistance allele frequency to Bt cotton in field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) in China. J Econ Entomol. 2008;101(3):933–43. 18613597.

47. Yue BS, Huang FN, Leonard BR, Moore S, Parker R, Andow DA, et al. Verifying an F1 screen for identification and quantification of rare Bacillus thuringiensis resistance alleles in field populations of the sugarcane borer, Diatraea saccharalis. Entomol Exp Appl. 2008;129(2):172–80. WOS:000260009400008.

48. Downes S, Mahon R. Successes and challenges of managing resistance in Helicoverpa armigera to Bt cotton in Australia. GM crops & food. 2012;3(3):228–34. doi: 10.4161/gmcr.20194 22572906.

49. Downes S, Mahon R. Evolution, ecology and management of resistance in Helicoverpa spp. to Bt cotton in Australia. J Invertebr Pathol. 2012;110(3):281–6. doi: 10.1016/j.jip.2012.04.005 22537836.

50. Downes S. 2014–15 End of season resistance monitoring report. Australian Government Cotton Research and Development Corporation, 2015.

51. Shimomura M, Minami H, Suetsugu Y, Ohyanagi H, Satoh C, Antonio B, et al. KAIKObase: an integrated silkworm genome database and data mining tool. BMC Genomics. 2009;10:486. doi: 10.1186/1471-2164-10-486 19843344; PubMed Central PMCID: PMCPMC2770533.

52. Sahara K, Yoshido A, Shibata F, Fujikawa-Kojima N, Okabe T, Tanaka-Okuyama M, et al. FISH identification of Helicoverpa armigera and Mamestra brassicae chromosomes by BAC and fosmid probes. Insect Biochem Molec. 2013;43(8):644–53. doi: 10.1016/J.Ibmb.2013.04.003 ISI:000322561700003.

53. Gahan LJ, Ma YT, Coble MLM, Gould F, Moar WJ, Heckel DG. Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae). J Econ Entomol. 2005;98(4):1357–68. ISI:000231056100037. 16156591

54. Knight PJK, Knowles BH, Ellar DJ. Molecular-cloning of an insect aminopeptidase-N that serves as a receptor for Bacillus thuringiensis Cry1A(C) toxin. J Biol Chem. 1995;270(30):17765–70. WOS:A1995RM26600023. 7629076

55. Hossain DM, Shitomi Y, Moriyama K, Higuchi M, Hayakawa T, Mitsui T, et al. Characterization of a novel plasma membrane protein, expressed in the midgut epithelia of Bombyx mori, that binds to Cry1A toxins. Appl Environ Microb. 2004;70(8):4604–12. WOS:000223290100026.

56. Mauchamp B, Royer C, Garel A, Jalabert A, Da Rocha M, Grenier A-M, et al. Polycalin (chlorophyllid A binding protein): A novel, very large fluorescent lipocalin from the midgut of the domestic silkworm Bombyx mori L. Insect Biochem Molec. 2006;36(8):623–33. WOS:000240084100003.

57. Jin L, Wei Y, Zhang L, Yang Y, Tabashnik BE, Wu Y. Dominant resistance to Bt cotton and minor cross-resistance to Bt toxin Cry2Ab in cotton bollworm from China. Evolutionary applications. 2013;6(8):1222–35. doi: 10.1111/eva.12099 24478804; PubMed Central PMCID: PMC3901552.

58. Wei J, Guo Y, Liang G, Wu K, Zhang J, Tabashnik BE, et al. Cross-resistance and interactions between Bt toxins Cry1Ac and Cry2Ab against the cotton bollworm. Sci Rep. 2015;5:7714. doi: 10.1038/srep07714 25586723; PubMed Central PMCID: PMCPMC4293620.

59. Gould F, Martinez-Ramirez A, Anderson A, Ferre J, Silva FJ, Moar WJ. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. P Natl Acad Sci USA. 1992;89(17):7986–90. 11607319; PubMed Central PMCID: PMC49840.

60. Carriere Y, Crickmore N, Tabashnik BE. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat Biotechnol. 2015;33(2):161–8. doi: 10.1038/nbt.3099 25599179.

61. Liu SM, Zhou S, Tian L, Guo EN, Luan YX, Zhang JZ, et al. Genome-wide identification and characterization of ATP-binding cassette transporters in the silkworm, Bombyx mori. BMC Genomics. 2011;12: 491:491. doi: 10.1186/1471-2164-12-491 ISI:000296333500003; PubMed Central PMCID: PMCPMC3224256. 21981826

62. Xie XD, Cheng TC, Wang GH, Duan J, Niu WH, Xia QY. Genome-wide analysis of the ATP-binding cassette (ABC) transporter gene family in the silkworm, Bombyx mori. Mol Biol Rep. 2012;39(7):7281–91. doi: 10.1007/S11033-012-1558-3 ISI:000304404600007. 22311044

63. Xia QY, Wang J, Zhou ZY, Li RQ, Fan W, Cheng DJ, et al. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Molec. 2008;38(12):1036–45. doi: 10.1016/J.Ibmb.2008.11.004 ISI:000264262200002.

64. Tay WT, Behere GT, Batterham P, Heckel DG. Generation of microsatellite repeat families by RTE retrotransposons in lepidopteran genomes. BMC Evol Biol. 2010;10:144. doi: 10.1186/1471-2148-10-144 20470440; PubMed Central PMCID: PMCPMC2887409.

65. Greenplate JT, Mullins JW, Penn SR, Dahm A, Reich BJ, Osborn JA, et al. Partial characterization of cotton plants expressing two toxin proteins from Bacillus thuringiensis: relative toxin contribution, toxin interaction, and resistance management. J Appl Entomol. 2003;127(6):340–7. doi: 10.1046/j.1439-0418.2003.00766.x WOS:000183511900006.

66. Li Y, Romeis J, Wang P, Peng Y, Shelton AM. A comprehensive assessment of the effects of Bt cotton on Coleomegilla maculata demonstrates no detrimental effects by Cry1Ac and Cry2Ab. PLoS One. 2011;6(7):e22185. doi: 10.1371/journal.pone.0022185 21765949; PubMed Central PMCID: PMCPMC3134477.

67. Ohsawa M, Tanaka M, Moriyama K, Shimazu M, Asano S, Miyamoto K, et al. A 50-Kilodalton Cry2A peptide is lethal to Bombyx mori and Lymantria dispar. Appl Environ Microb. 2012;78(13):4755–7. doi: 10.1128/Aem.07123-11 WOS:000305376600028.

68. Zhan S, Merlin C, Boore JL, Reppert SM. The monarch butterfly genome yields insights into long-distance migration. Cell. 2011;147(5):1171–85. doi: 10.1016/J.Cell.2011.09.052 ISI:000297376600026. 22118469

69. The Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature. 2012;487(7405):94–8. Epub 2012/06/23. doi: 10.1038/nature11041 22722851; PubMed Central PMCID: PMC3398145.

70. You M, Yue Z, He W, Yang X, Yang G, Xie M, et al. A heterozygous moth genome provides insights into herbivory and detoxification. Nat Genet. 2013;45(2):220–5. Epub 2013/01/15. doi: 10.1038/ng.2524 23313953.

71. Jouraku A, Yamamoto K, Kuwazaki S, Urio M, Suetsugu Y, Narukawa J, et al. KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella. BMC Genomics. 2013;14:464. Epub 2013/07/11. doi: 10.1186/1471-2164-14-464 23837716; PubMed Central PMCID: PMC3711893.

72. Keller O, Odronitz F, Stanke M, Kollmar M, Waack S. Scipio: using protein sequences to determine the precise exon/intron structures of genes and their orthologs in closely related species. BMC Bioinformatics. 2008;9:278. doi: 10.1186/1471-2105-9-278 18554390; PubMed Central PMCID: PMCPMC2442105.

73. Salamov AA, Solovyev VV. Ab initio gene finding in Drosophila genomic DNA. Genome Res. 2000;10(4):516–22. doi: 10.1101/Gr.10.4.516 ISI:000086744300014. 10779491

74. Pigott CR, Ellar DJ. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol R. 2007;71(2):255–81. doi: 10.1128/Mmbr.00034-06 ISI:000247273300001.

75. Hernandez-Rodriguez CS, Van Vliet A, Bautsoens N, Van Rie J, Ferre J. Specific binding of Bacillus thuringiensis Cry2A insecticidal proteins to a common site in the midgut of Helicoverpa species. Appl Environ Microb. 2008;74(24):7654–9. doi: 10.1128/Aem.01373-08 ISI:000261513700025.

76. Bungert S, Molday LL, Molday RS. Membrane topology of the ATP binding cassette transporter ABCR and its relationship to ABC1 and related ABCA transporters—Identification of N-linked glycosylation sites. J Biol Chem. 2001;276(26):23539–46. ISI:000169531100044. 11320094

77. Kaminski WE, Piehler A, Wenzel JJ. ABC A-subfamily transporters: structure, function and disease. Bba-Mol Basis Dis. 2006;1762(5):510–24. doi: 10.1016/J.Bbadis.2006.01.011 ISI:000237878100003.

78. Crickmore N, Baum J, Bravo A, Lereclus D, Narva K, Sampson K, et al. Bacillus thuringiensis toxin nomenclature 2014 [cited 2014 15 November]. Available from: <http://www.btnomenclature.info/> (accessed 10-Aug-15).

79. Jurat-Fuentes JL, Gould FL, Adang MJ. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Appl Environ Microb. 2003;69(10):5898–906. ISI:000185881300022.

80. Li HR, Oppert B, Higgins RA, Huang FN, Buschman LL, Zhu KY. Susceptibility of Dipel-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae) to individual Bacillus thuringiensis protoxins. J Econ Entomol. 2005;98(4):1333–40. ISI:000231056100034. 16156588

81. Morse RJ, Yamamoto T, Stroud RM. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure. 2001;9(5):409–17. ISI:000168684000007. 11377201

82. McNeil BC, Dean DH. Bacillus thuringiensis Cry2Ab is active on Anopheles mosquitoes: single D block exchanges reveal critical residues involved in activity. Fems Microbiol Lett. 2011;325(1):16–21. doi: 10.1111/J.1574-6968.2011.02403.X ISI:000297208500003. 22092857

83. Nicholls CN, Ahmad W, Ellar DJ. Evidence for 2 different types of insecticidal P2 toxins with dual specificity in Bacillus thuringiensis subspecies. J Bacteriol. 1989;171(9):5141–7. ISI:A1989AM27300083. 2570060

84. Liang HX, Liu Y, Zhu J, Guan P, Li SC, Wang SQ, et al. Characterization of Cry2-type genes of Bacillus thuringiensis strains from soil-isolated of Sichuan Basin, China. Braz J Microbiol. 2011;42(1):140–6. ISI:000286320600018. doi: 10.1590/S1517-83822011000100018 24031615

85. Albrecht C, Viturro E. The ABCA subfamily—gene and protein structures, functions and associated hereditary diseases. Pflug Arch Eur J Phy. 2007;453(5):581–9. ISI:000244303300005.

86. Dermauw W, Van Leeuwen T. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochem Molec. 2014;45:89–110. doi: 10.1016/j.ibmb.2013.11.001 24291285.

87. Mace S, Cousin E, Ricard S, Genin E, Spanakis E, Lafargue-Soubigou C, et al. ABCA2 is a strong genetic risk factor for early-onset Alzheimer's disease. Neurobiol Dis. 2005;18(1):119–25. doi: 10.1016/J.Nbd.2004.09.011 ISI:000226452500011. 15649702

88. Mack JT, Townsend DM, Beljanski V, Tew KD. The ABCA2 transporter: Intracellular roles in trafficking and metabolism of LDL-derived cholesterol and sterol-related compounds. Curr Drug Metab. 2007;8(1):47–57. doi: 10.2174/138920007779315044 ISI:000243054800005. 17266523

89. Davis W. The ATP-binding cassette transporter-2 (ABCA2) regulates cholesterol homeostasis and low-density lipoprotein receptor metabolism in N2a neuroblastoma cells. Biochimica Et Biophysica Acta. 2011;1811(12):1152–64. doi: 10.1016/J.Bbalip.2011.07.010 ISI:000298521700018. 21810484

90. Mack JT, Beljanski V, Soulika AM, Townsend DM, Brown CB, Davis W, et al. "Skittish" Abca2 knockout mice display tremor, hyperactivity, and abnormal myelin ultrastructure in the central nervous system. Mol Cell Biol. 2007;27(1):44–53. ISI:000243136800003. 17060448

91. Mahon RJ, Young S. Selection experiments to assess fitness costs associated with Cry2Ab resistance in Helicoverpa armigera (Lepidoptera: Noctuidae). J Econ Entomol. 2010;103(3):835–42. 20568630.

92. Mahon RJ, Olsen KM, Downes S, Addison S. Frequency of alleles conferring resistance to the bt toxins Cry1Ac and Cry2Ab in Australian populations of Helicoverpa armigera (Lepidoptera: noctuidae). J Econ Entomol. 2007;100(6):1844–53. ISI:000251700400015. 18232402

93. Zhang H, Tian W, Zhao J, Jin L, Yang J, Liu C, et al. Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. P Natl Acad Sci USA. 2012;109(26):10275–80. doi: 10.1073/pnas.1200156109 22689968; PubMed Central PMCID: PMC3387040.

94. Gahan LJ, Gould F, Lopez JD, Micinski S, Heckel DG. A polymerase chain reaction screen of field populations of Heliothis virescens for a retrotransposon insertion conferring resistance to Bacillus thuringiensis toxin. J Econ Entomol. 2007;100(1):187–94. doi: 10.1603/0022-0493(2007)100[187:Apcrso]2.0.Co;2 ISI:000243917200026. 17370827

95. Fabrick JA, Ponnuraj J, Singh A, Tanwar RK, Unnithan GC, Yelich AJ, et al. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to bt cotton in India. PLoS One. 2014;9(5):e97900. doi: 10.1371/journal.pone.0097900 24840729; PubMed Central PMCID: PMC4026531.

96. Tabashnik BE, Fabrick JA, Henderson S, Biggs RW, Yafuso CM, Nyboer ME, et al. DNA screening reveals pink bollworm resistance to Bt cotton remains rare after a decade of exposure. J Econ Entomol. 2006;99(5):1525–30. ISI:000241240400003. 17066779

97. Tay WT, Soria MF, Walsh T, Thomazoni D, Silvie P, Behere GT, et al. A brave new world for an Old World pest: Helicoverpa armigera (Lepdioptera: Noctuidae) in Brazil. Plos One. 2013;8(11):e80134. doi: 10.1371/journal.pone.0080134 24260345; PubMed Central PMCID: PMCPMC3832445.

98. Kriticos DJ, Ota N, Hutchison WD, Beddow J, Walsh T, Tay WT, et al. The potential distribution of invading Helicoverpa armigera in North America: Is it just a matter of time? Plos One. 2015;10(3):e0119618. doi: 10.1371/Journal.Pone.0119618 WOS:000352138500121. 25786260

99. Song X, Kain W, Cassidy D, Wang P. Resistance to Bacillus thuringiensis toxin Cry2Ab in Trichoplusia ni is conferred by a novel genetic mechanism. Appl Environ Microb. 2015;81(15):5184–95. doi: 10.1128/Aem.00593-15 WOS:000357668600032.

100. Mahon RJ, Olsen KM, Downes S. Isolations of Cry2Ab resistance in Australian populations of Helicoverpa armigera (Lepidoptera: Noctuidae) are allelic. J Econ Entomol. 2008;101(3):909–14. ISI:000258337200034. 18613594

101. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23(21):4407–14. doi: 10.1093/nar/23.21.4407 7501463; PubMed Central PMCID: PMCPMC307397.

102. Baxter SW, Zhao J-Z, Shelton AM, Vogel H, Heckel DG. Genetic mapping of Bt-toxin binding proteins in a Cry1A-toxin resistant strain of diamondback moth Plutella xylostella. Insect Biochem Molec. 2008;38(2):125–35. doi: 10.1016/j.ibmb.2007.09.014 WOS:000253564200001.

103. Tay WT, Behere GT, Heckel DG, Lee SF, Batterham P. Exon-primed intron-crossing (EPIC) PCR markers of Helicoverpa armigera (Lepidoptera: Noctuidae). Bull Entomol Res. 2008;98(5):509–18. doi: 10.1017/S000748530800583X 18826667.

104. Behere GT, Tay WT, Russell DA, Kranthi KR, Batterham P. Population Genetic Structure of the Cotton Bollworm Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) in India as Inferred from EPIC-PCR DNA Markers. PLoS One. 2013;8(1):e53448. doi: 10.1371/journal.pone.0053448 WOS:000314705800045. 23326431

105. Staden R, Beal KF, Bonfield JK. The Staden package, 1998. Methods Mol Biol. 2000;132:115–30. 10547834.

106. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, et al. Artemis: sequence visualization and annotation. Bioinformatics. 2000;16(10):944–5. doi: 10.1093/Bioinformatics/16.10.944 11120685.

107. Juretic D, Zoranic L, Zucic D. Basic charge clusters and predictions of membrane protein topology. J Chem Inf Comp Sci. 2002;42(3):620–32. doi: 10.1021/Ci010263s ISI:000175920000024.

108. Azarian SM, Travis GH. The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt's disease (ABCR). Febs Lett. 1997;409(2):247–52. ISI:A1997XF37400027. 9202155

109. Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008;9(4):286–98. Epub 2008/03/29. doi: 10.1093/bib/bbn013 18372315.

110. Stamatakis A, Ott M, Ludwig T. RAxML-OMP: An efficient program for phylogenetic inference on SMPs. Lect Notes Comput Sc. 2005;3606:288–302. ISI:000232251100025.

111. Stamatakis A, Hoover P, Rougemont J. A Rapid Bootstrap Algorithm for the RAxML Web Servers. Syst Biol. 2008;57(5):758–71. doi: 10.1080/10635150802429642 ISI:000259995600008. 18853362

112. Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. doi: 10.1093/Bioinformatics/Btu033 ISI:000336095100024. 24451623

113. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R. Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics. 2007;8:460. doi: 10.1186/1471-2105-8-460 18034891; PubMed Central PMCID: PMCPMC2216043.

114. Xia Q, Cheng D, Duan J, Wang G, Cheng T, Zha X, et al. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biol. 2007;8(8):R162. Epub 2007/08/09. doi: 10.1186/gb-2007-8-8-r162 17683582; PubMed Central PMCID: PMC2374993.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#