#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genus-Wide Comparative Genomics of Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin


Malassezia are the dominant eukaryotic residents of human skin and are associated with the most common skin disorders, including dandruff, atopic dermatitis, eczema, and others. Despite significant effort, the role of Malassezia in skin disease and homeostasis remains unclear. Malassezia are also unique among fungi by requiring lipids for growth, but the breadth and genetic basis of their lipophilic lifestyle has not been comprehensively studied. Here we report the complete genomes of all 14 Malassezia species (including multiple strains of the most common species found on humans) and systematically identify features that define the genus and its sub-lineages, including horizontally transferred genes likely to represent key gain-of-function events and which may have enabled evolution of the genus from plant to animal inhabitants. Genus wide expansion of lipid hydrolases and loss of carbohydrate metabolism genes underscore the entire genus’ gradual evolution to lipid-dependency, which was confirmed even in the previously thought to be lipophilic M. pachydermatis, via genomics with experimental confirmation. Finally, these reference genomes will serve as a valuable resource for future metagenomic investigations into the role of Malassezia species in normal healthy skin and diseases.


Vyšlo v časopise: Genus-Wide Comparative Genomics of Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin. PLoS Genet 11(11): e32767. doi:10.1371/journal.pgen.1005614
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005614

Souhrn

Malassezia are the dominant eukaryotic residents of human skin and are associated with the most common skin disorders, including dandruff, atopic dermatitis, eczema, and others. Despite significant effort, the role of Malassezia in skin disease and homeostasis remains unclear. Malassezia are also unique among fungi by requiring lipids for growth, but the breadth and genetic basis of their lipophilic lifestyle has not been comprehensively studied. Here we report the complete genomes of all 14 Malassezia species (including multiple strains of the most common species found on humans) and systematically identify features that define the genus and its sub-lineages, including horizontally transferred genes likely to represent key gain-of-function events and which may have enabled evolution of the genus from plant to animal inhabitants. Genus wide expansion of lipid hydrolases and loss of carbohydrate metabolism genes underscore the entire genus’ gradual evolution to lipid-dependency, which was confirmed even in the previously thought to be lipophilic M. pachydermatis, via genomics with experimental confirmation. Finally, these reference genomes will serve as a valuable resource for future metagenomic investigations into the role of Malassezia species in normal healthy skin and diseases.


Zdroje

1. Malassez L. Note sur le champignon du pityriasis simple. Arch Physiol. 1874;1: 451–459.

2. Xu J, Saunders CW, Hu P, Grant RA, Boekhout T, Kuramae EE, et al. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci. 2007;104: 18730–18735. 18000048

3. Kurtzman C, Fell JW, Boekhout T. The Yeasts: A Taxonomic Study. Elsevier; 2011.

4. Castellá G, Hernández JJ, Cabañes FJ. Genetic typing of Malassezia pachydermatis from different domestic animals. Vet Microbiol. 2005;108: 291–296. 15922521

5. Hirai A, Kano R, Makimura K, Duarte ER, Hamdan JS, Lachance M-A, et al. Malassezia nana sp. nov., a novel lipid-dependent yeast species isolated from animals. Int J Syst Evol Microbiol. 2004;54: 623–627. 15023986

6. Cabañes FJ, Theelen B, Castellá G, Boekhout T. Two new lipid-dependent Malassezia species from domestic animals. FEMS Yeast Res. 2007;7: 1064–1076. 17367513

7. Cabañes FJ, Hernández JJ, Castellá G. Molecular Analysis of Malassezia sympodialis-Related Strains from Domestic Animals. J Clin Microbiol. 2005;43: 277–283. 15634983

8. Ra K, Jr RE, Nb O, Rw W. Quantity and distribution of Malassezia organisms on the skin of clinically normal dogs. J Am Vet Med Assoc. 1996;208: 1048–1051. 8621316

9. Gemmer CM, DeAngelis YM, Theelen B, Boekhout T, Thomas L. Dawson J. Fast, Noninvasive Method for Molecular Detection and Differentiation of Malassezia Yeast Species on Human Skin and Application of the Method to Dandruff Microbiology. J Clin Microbiol. 2002;40: 3350–3357. 12202578

10. Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A. The Malassezia Genus in Skin and Systemic Diseases. Clin Microbiol Rev. 2012;25: 106–141. doi: 10.1128/​CMR.00021-11 22232373

11. Kong HH, Segre JA with Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et al., NIH Intramural Sequencing Center Comparative Sequencing Program. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498: 367–370. doi: 10.1038/nature12171 23698366

12. Kong HH, Segre JA with Oh J, Byrd AL, Deming C, Conlan S, NISC Comparative Sequencing Program. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514: 59–64. doi: 10.1038/nature13786 25279917

13. Dupuy AK, David MS, Li L, Heider TN, Peterson JD, Montano EA, et al. Redefining the Human Oral Mycobiome with Improved Practices in Amplicon-based Taxonomy: Discovery of Malassezia as a Prominent Commensal. PLoS ONE. 2014;9: e90899. doi: 10.1371/journal.pone.0090899 24614173

14. Gioti A, Nystedt B, Li W, Xu J, Andersson A, Averette AF, et al. Genomic Insights into the Atopic Eczema-Associated Skin Commensal Yeast Malassezia sympodialis. mBio. 2013;4: e00572–12. doi: 10.1128/mBio.00572-12 23341551

15. Amend A. From Dandruff to Deep-Sea Vents: Malassezia-like Fungi Are Ecologically Hyper-diverse. PLoS Pathog. 2014;10: e1004277. doi: 10.1371/journal.ppat.1004277 25144294

16. Wang Q-M, Theelen B, Groenewald M, Bai F-Y, Boekhout T. Moniliellomycetes and Malasseziomycetes, two new classes in Ustilaginomycotina. Persoonia—Mol Phylogeny Evol Fungi. 2014;33: 41–47.

17. Begerow D, Stoll M, Bauer R. A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia. 2006;98: 906–916. 17486967

18. Saunders CW, Scheynius A, Heitman J. Malassezia Fungi Are Specialized to Live on Skin and Associated with Dandruff, Eczema, and Other Skin Diseases. PLoS Pathog. 2012;8: e1002701. doi: 10.1371/journal.ppat.1002701 22737067

19. White TC, Findley K, Dawson TL, Scheynius A, Boekhout T, Cuomo CA, et al. Fungi on the skin: dermatophytes and Malassezia. Cold Spring Harb Perspect Med. 2014;4.

20. Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23: 1061–1067. 17332020

21. Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, et al. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J. 2014;8: 1464–1475. doi: 10.1038/ismej.2013.254 24451203

22. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci. 2012;109: 21390–21395. doi: 10.1073/pnas.1215210110 23236140

23. Rascovan N, Carbonetto B, Revale S, Reinert MD, Alvarez R, Godeas AM, et al. The PAMPA datasets: a metagenomic survey of microbial communities in Argentinean pampean soils. Microbiome. 2013;1: 21. doi: 10.1186/2049-2618-1-21 24450949

24. Greenblum S, Carr R, Borenstein E. Extensive strain-level copy-number variation across human gut microbiome species. Cell. 2015;160: 583–594. doi: 10.1016/j.cell.2014.12.038 25640238

25. Matheny PB, Gossmann JA, Zalar P, Kumar TKA, Hibbett DS. Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. Can J Bot. 2006;84: 1794–1805.

26. Dankner WM, Spector SA, Fierer J, Davis CE. Malassezia Fungemia in Neonates and Adults: Complication of Hyperalimentation. Rev Infect Dis. 1987;9: 743–753. 3125578

27. Castellá G, Coutinho SDA, Cabañes FJ. Phylogenetic relationships of Malassezia species based on multilocus sequence analysis. Med Mycol. 2014;52: 99–105. doi: 10.3109/13693786.2013.815372 23902157

28. Theelen B, Silvestri M, Guého E, van Belkum A, Boekhout T. Identification and typing of Malassezia yeasts using amplified fragment length polymorphism (AFLPTm), random amplified polymorphic DNA (RAPD) and denaturing gradient gel electrophoresis (DGGE). FEMS Yeast Res. 2001;1: 79–86. 12702352

29. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al. The Pfam protein families database. Nucleic Acids Res. 2004;32: D138–D141. 14681378

30. Guillot J, Bond R. Malassezia pachydermatis: a review. Med Mycol. 1999;37: 295–306. 10520154

31. Gueho E, Simmons RB, Pruitt WR, Meyer SA, Ahearn DG. Association of Malassezia pachydermatis with systemic infections of humans. J Clin Microbiol. 1987;25: 1789–1790. 3654952

32. Nielsen K, Heitman J. Sex and Virulence of Human Pathogenic Fungi. In: Dunlap JC, editor. Advances in Genetics. Academic Press; 2007. pp. 143–173. Available: http://www.sciencedirect.com/science/article/pii/S006526600657004X 17352904

33. Alzomor AK, Moharram AS, Absi NMA. Formulation and evaluation of potash alum as deodorant lotion and after shaving astringent as cream and gel. Int Curr Pharm J. 2014;3: 228–233.

34. Fitzpatrick DA, Logue ME, Butler G. Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis. BMC Evol Biol. 2008;8: 181. doi: 10.1186/1471-2148-8-181 18577206

35. Marcet-Houben M, Gabaldón T. Acquisition of prokaryotic genes by fungal genomes. Trends Genet TIG. 2010;26: 5–8. doi: 10.1016/j.tig.2009.11.007 19969385

36. Kruppa MD, Lowman DW, Chen Y-H, Selander C, Scheynius A, Monteiro MA, et al. Identification of (1—>6)-beta-D-glucan as the major carbohydrate component of the Malassezia sympodialis cell wall. Carbohydr Res. 2009;344: 2474–2479. doi: 10.1016/j.carres.2009.09.029 19853245

37. Bairwa G, Kaur R. A novel role for a glycosylphosphatidylinositol-anchored aspartyl protease, CgYps1, in the regulation of pH homeostasis in Candida glabrata. Mol Microbiol. 2011;79: 900–913. doi: 10.1111/j.1365-2958.2010.07496.x 21299646

38. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci CMLS. 2004;61: 192–208. 14745498

39. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215: 403–410. 2231712

40. Kaneko T, Makimura K, Abe M, Shiota R, Nakamura Y, Kano R, et al. Revised Culture-Based System for Identification of Malassezia Species. J Clin Microbiol. 2007;45: 3737–3742. 17881545

41. Ellermeier CD, Losick R. Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes Dev. 2006;20: 1911–1922. 16816000

42. Pei J, Grishin NV. Type II CAAX prenyl endopeptidases belong to a novel superfamily of putative membrane-bound metalloproteases. Trends Biochem Sci. 2001;26: 275–277. 11343912

43. Manolaridis I, Kulkarni K, Dodd RB, Ogasawara S, Zhang Z, Bineva G, et al. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature. 2013;504: 301–305. doi: 10.1038/nature12754 24291792

44. Batra R, Boekhout T, Guého E, Cabañes FJ, Dawson TL, Gupta AK. Malassezia Baillon, emerging clinical yeasts. FEMS Yeast Res. 2005;5: 1101–1113. 16084129

45. DeAngelis YM, Saunders CW, Johnstone KR, Reeder NL, Coleman CG, Kaczvinsky JR, et al. Isolation and Expression of a Malassezia globosa Lipase Gene, LIP1. J Invest Dermatol. 2007;127: 2138–2146. 17460728

46. Cafarchia C, Otranto D. Association between Phospholipase Production by Malassezia pachydermatis and Skin Lesions. J Clin Microbiol. 2004;42: 4868–4869. 15472366

47. Lee YW, Lee SY, Lee Y, Jung WH. Evaluation of Expression of Lipases and Phospholipases of Malassezia restricta in Patients with Seborrheic Dermatitis. Ann Dermatol. 2013;25: 310. doi: 10.5021/ad.2013.25.3.310 24003273

48. Ghannoum MA. Potential Role of Phospholipases in Virulence and Fungal Pathogenesis. Clin Microbiol Rev. 2000;13: 122–143. 10627494

49. Guého E, Midgley G, Guillot J. The genus Malassezia with description of four new species. Antonie Van Leeuwenhoek. 1996;69: 337–355. 8836432

50. Heitman J, Carter DA, Dyer PS, Soll DR. Sexual Reproduction of Human Fungal Pathogens. Cold Spring Harb Perspect Med. 2014;4: a019281. doi: 10.1101/cshperspect.a019281 25085958

51. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012;1: 18. doi: 10.1186/2047-217X-1-18 23587118

52. Gao S, Sung W-K, Nagarajan N. Opera: Reconstructing Optimal Genomic Scaffolds with High-Throughput Paired-End Sequences. J Comput Biol. 2011;18: 1681–1691. doi: 10.1089/cmb.2011.0170 21929371

53. Gao S, Bertrand D, Nagarajan N. FinIS: Improved in silico Finishing Using an Exact Quadratic Programming Formulation. In: Raphael B, Tang J, editors. Algorithms in Bioinformatics. Springer Berlin Heidelberg; 2012. pp. 314–325. Available: http://link.springer.com.ejproxy.a-star.edu.sg/chapter/10.1007/978-3-642-33122-0_25

54. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29: 644–652. doi: 10.1038/nbt.1883 21572440

55. Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5: 59. 15144565

56. Stanke M, Schöffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics. 2006;7: 62. 16469098

57. Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011;12: 491. doi: 10.1186/1471-2105-12-491 22192575

58. Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, et al. The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now. G3 GenesGenomesGenetics. 2014;4: 389–398.

59. Kämper J, Kahmann R, Bölker M, Ma L-J, Brefort T, Saville BJ, et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature. 2006;444: 97–101. 17080091

60. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, et al. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A. 2004;101: 7329–7334. 15123810

61. Kent WJ. BLAT—The BLAST-Like Alignment Tool. Genome Res. 2002;12: 656–664. 11932250

62. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32: 1792–1797. 15034147

63. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22: 2688–2690. 16928733

64. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17: 754–755. 11524383

65. Creevey CJ, McInerney JO. Clann: investigating phylogenetic information through supertree analyses. Bioinformatics. 2005;21: 390–392. 15374874

66. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30: 1575–1584. 11917018

67. Chen K, Durand D, Farach-Colton M. NOTUNG: a program for dating gene duplications and optimizing gene family trees. J Comput Biol J Comput Mol Cell Biol. 2000;7: 429–447.

68. Yang Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol Biol Evol. 2007;24: 1586–1591. 17483113

69. Ro BI, Dawson TL. The role of sebaceous gland activity and scalp microfloral metabolism in the etiology of seborrheic dermatitis and dandruff. J Investig Dermatol Symp Proc Soc Investig Dermatol Inc Eur Soc Dermatol Res. 2005;10: 194–197.

70. Troller JA. Model System for the Investigation of Dandruff. J Soc Cosmet Chem. 1971;22: 187–198.

71. Consortium UniProt. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2014;42: D191–198. doi: 10.1093/nar/gkt1140 24253303

72. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10: 421. doi: 10.1186/1471-2105-10-421 20003500

73. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Res. 2008;36: D25–30. 18073190

74. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56: 564–577. 17654362

75. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59: 307–321. doi: 10.1093/sysbio/syq010 20525638

76. Hong C, Manimaran S, Shen Y, Perez-Rogers JF, Byrd AL, Castro-Nallar E, et al. PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples. Microbiome. 2014;2: 1–15.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#