-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Simple Methods for Generating and Detecting Locus-Specific Mutations Induced with TALENs in the Zebrafish Genome
The zebrafish is a powerful experimental system for uncovering gene function in vertebrate organisms. Nevertheless, studies in the zebrafish have been limited by the approaches available for eliminating gene function. Here we present simple and efficient methods for inducing, detecting, and recovering mutations at virtually any locus in the zebrafish. Briefly, double-strand DNA breaks are induced at a locus of interest by synthetic nucleases, called TALENs. Subsequent host repair of the DNA lesions leads to the generation of insertion and deletion mutations at the targeted locus. To detect the induced DNA sequence alterations at targeted loci, genomes are examined using High Resolution Melt Analysis, an efficient and sensitive method for detecting the presence of newly arising sequence polymorphisms. As the DNA binding specificity of a TALEN is determined by a custom designed array of DNA recognition modules, each of which interacts with a single target nucleotide, TALENs with very high target sequence specificities can be easily generated. Using freely accessible reagents and Web-based software, and a very simple cloning strategy, a TALEN that uniquely recognizes a specific pre-determined locus in the zebrafish genome can be generated within days. Here we develop and test the activity of four TALENs directed at different target genes. Using the experimental approach described here, every embryo injected with RNA encoding a TALEN will acquire targeted mutations. Multiple independently arising mutations are produced in each growing embryo, and up to 50% of the host genomes may acquire a targeted mutation. Upon reaching adulthood, approximately 90% of these animals transmit targeted mutations to their progeny. Results presented here indicate the TALENs are highly sequence-specific and produce minimal off-target effects. In all, it takes about two weeks to create a target-specific TALEN and generate growing embryos that harbor an array of germ line mutations at a pre-specified locus.
Vyšlo v časopise: Simple Methods for Generating and Detecting Locus-Specific Mutations Induced with TALENs in the Zebrafish Genome. PLoS Genet 8(8): e32767. doi:10.1371/journal.pgen.1002861
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002861Souhrn
The zebrafish is a powerful experimental system for uncovering gene function in vertebrate organisms. Nevertheless, studies in the zebrafish have been limited by the approaches available for eliminating gene function. Here we present simple and efficient methods for inducing, detecting, and recovering mutations at virtually any locus in the zebrafish. Briefly, double-strand DNA breaks are induced at a locus of interest by synthetic nucleases, called TALENs. Subsequent host repair of the DNA lesions leads to the generation of insertion and deletion mutations at the targeted locus. To detect the induced DNA sequence alterations at targeted loci, genomes are examined using High Resolution Melt Analysis, an efficient and sensitive method for detecting the presence of newly arising sequence polymorphisms. As the DNA binding specificity of a TALEN is determined by a custom designed array of DNA recognition modules, each of which interacts with a single target nucleotide, TALENs with very high target sequence specificities can be easily generated. Using freely accessible reagents and Web-based software, and a very simple cloning strategy, a TALEN that uniquely recognizes a specific pre-determined locus in the zebrafish genome can be generated within days. Here we develop and test the activity of four TALENs directed at different target genes. Using the experimental approach described here, every embryo injected with RNA encoding a TALEN will acquire targeted mutations. Multiple independently arising mutations are produced in each growing embryo, and up to 50% of the host genomes may acquire a targeted mutation. Upon reaching adulthood, approximately 90% of these animals transmit targeted mutations to their progeny. Results presented here indicate the TALENs are highly sequence-specific and produce minimal off-target effects. In all, it takes about two weeks to create a target-specific TALEN and generate growing embryos that harbor an array of germ line mutations at a pre-specified locus.
Zdroje
1. EngertF, WilsonS (2011) Zebrafish neurobiology: From development to circuit function and behaviour. Dev Neurobiol
2. HutsonLD, ChienCB (2002) Wiring the zebrafish: axon guidance and synaptogenesis. Curr Opin Neurobiol 12 : 87–92.
3. KrensSF, HeisenbergCP (2011) Cell sorting in development. Curr Top Dev Biol 95 : 189–213.
4. LangdonYG, MullinsMC (2011) Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annu Rev Genet 45 : 357–377.
5. LawsonND, WolfeSA (2011) Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev Cell 21 : 48–64.
6. LohrH, HammerschmidtM (2011) Zebrafish in endocrine systems: recent advances and implications for human disease. Annu Rev Physiol 73 : 183–211.
7. NevinLM, RoblesE, BaierH, ScottEK (2010) Focusing on optic tectum circuitry through the lens of genetics. BMC Biol 8 : 126.
8. ShepardJL, AmatrudaJF, SternHM, SubramanianA, FinkelsteinD, et al. (2005) A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc Natl Acad Sci U S A 102 : 13194–13199.
9. PhillipsJB, Blanco-SanchezB, LentzJJ, TallafussA, KhanobdeeK, et al. (2011) Harmonin (Ush1c) is required in zebrafish Muller glial cells for photoreceptor synaptic development and function. Dis Model Mech 4 : 786–800.
10. JurynecMJ, XiaR, MackrillJJ, GuntherD, CrawfordT, et al. (2008) Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci U S A 105 : 12485–12490.
11. Rodriguez-MariA, WilsonC, TitusTA, CanestroC, BreMillerRA, et al. (2011) Roles of brca2 (fancd1) in oocyte nuclear architecture, gametogenesis, gonad tumors, and genome stability in zebrafish. PLoS Genet 7: e1001357 doi:10.1371/journal.pgen.1001357..
12. HuangP, XiaoA, ZhouM, ZhuZ, LinS, et al. (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29 : 699–700.
13. NaseviciusA, EkkerSC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26 : 216–220.
14. DraperBW, MorcosPA, KimmelCB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30 : 154–156.
15. EisenJS, SmithJC (2008) Controlling morpholino experiments: don't stop making antisense. Development 135 : 1735–1743.
16. WienholdsE, van EedenF, KostersM, MuddeJ, PlasterkRH, et al. (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13 : 2700–2707.
17. FritzA, RozowskiM, WalkerC, WesterfieldM (1996) Identification of selected gamma-ray induced deficiencies in zebrafish using multiplex polymerase chain reaction. Genetics 144 : 1735–1745.
18. CarrollD (2011) Genome engineering with zinc-finger nucleases. Genetics 188 : 773–782.
19. BakerM (2011) Gene-editing nucleases. Nat Methods 9 : 23–26.
20. UrnovFD, RebarEJ, HolmesMC, ZhangHS, GregoryPD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11 : 636–646.
21. DoyonY, McCammonJM, MillerJC, FarajiF, NgoC, et al. (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26 : 702–708.
22. FoleyJE, MaederML, PearlbergJ, JoungJK, PetersonRT, et al. (2009) Targeted mutagenesis in zebrafish using customized zinc-finger nucleases. Nat Protoc 4 : 1855–1867.
23. MengX, NoyesMB, ZhuLJ, LawsonND, WolfeSA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26 : 695–701.
24. BochJ, ScholzeH, SchornackS, LandgrafA, HahnS, et al. (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326 : 1509–1512.
25. BogdanoveAJ, VoytasDF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333 : 1843–1846.
26. MoscouMJ, BogdanoveAJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326 : 1501.
27. MillerJC, TanS, QiaoG, BarlowKA, WangJ, et al. (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29 : 143–148.
28. DengD, YanC, PanX, MahfouzM, WangJ, et al. (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335 : 720–723.
29. MakAN, BradleyP, CernadasRA, BogdanoveAJ, StoddardBL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335 : 716–719.
30. CermakT, DoyleEL, ChristianM, WangL, ZhangY, et al. (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39: e82.
31. ChristianM, CermakT, DoyleEL, SchmidtC, ZhangF, et al. (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186 : 757–761.
32. SanderJD, CadeL, KhayterC, ReyonD, PetersonRT, et al. (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29 : 697–698.
33. LamasonRL, MohideenMA, MestJR, WongAC, NortonHL, et al. (2005) SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310 : 1782–1786.
34. StreisingerG, WalkerC, DowerN, KnauberD, SingerF (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291 : 293–296.
35. StreisingerG, CoaleF, TaggartC, WalkerC, GrunwaldDJ (1989) Clonal origins of cells in the pigmented retina of the zebrafish eye. Dev Biol 131 : 60–69.
36. MooreJL, RushLM, BrenemanC, MohideenMA, ChengKC (2006) Zebrafish genomic instability mutants and cancer susceptibility. Genetics 174 : 585–600.
37. ParantJM, GeorgeSA, PryorR, WittwerCT, YostHJ (2009) A rapid and efficient method of genotyping zebrafish mutants. Dev Dyn 238 : 3168–3174.
38. KimmelCB, BallardWW, KimmelSR, UllmannB, SchillingTF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203 : 253–310.
39. Westerfield M (2000) The Zebrafish Book: A guide for the laboratory use of zebrafish (Danio rerio). 4th ed. Eugene: Univ. of Oregon Press.
Štítky
Genetika Reprodukčná medicína
Článek Mutational Signatures of De-Differentiation in Functional Non-Coding Regions of Melanoma GenomesČlánek Rescuing Alu: Recovery of Inserts Shows LINE-1 Preserves Alu Activity through A-Tail ExpansionČlánek Genetics and Regulatory Impact of Alternative Polyadenylation in Human B-Lymphoblastoid CellsČlánek Retrovolution: HIV–Driven Evolution of Cellular Genes and Improvement of Anticancer Drug ActivationČlánek The Mi-2 Chromatin-Remodeling Factor Regulates Higher-Order Chromatin Structure and Cohesin DynamicsČlánek Identification of Human Proteins That Modify Misfolding and Proteotoxicity of Pathogenic Ataxin-1
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2012 Číslo 8- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- Mutational Signatures of De-Differentiation in Functional Non-Coding Regions of Melanoma Genomes
- Rescuing Alu: Recovery of Inserts Shows LINE-1 Preserves Alu Activity through A-Tail Expansion
- Genetics and Regulatory Impact of Alternative Polyadenylation in Human B-Lymphoblastoid Cells
- Chromosome Territories Meet a Condensin
- It's All in the Timing: Too Much E2F Is a Bad Thing
- Fine-Mapping and Initial Characterization of QT Interval Loci in African Americans
- Genome Patterns of Selection and Introgression of Haplotypes in Natural Populations of the House Mouse ()
- A Combinatorial Amino Acid Code for RNA Recognition by Pentatricopeptide Repeat Proteins
- Advances in Quantitative Trait Analysis in Yeast
- Experimental Evolution of a Novel Sexually Antagonistic Allele
- Variation of Contributes to Dog Breed Skull Diversity
- , a Gene Involved in Axonal Pathfinding, Is Mutated in Patients with Kallmann Syndrome
- A Single Origin for Nymphalid Butterfly Eyespots Followed by Widespread Loss of Associated Gene Expression
- Cryptocephal, the ATF4, Is a Specific Coactivator for Ecdysone Receptor Isoform B2
- Retrovolution: HIV–Driven Evolution of Cellular Genes and Improvement of Anticancer Drug Activation
- The PARN Deadenylase Targets a Discrete Set of mRNAs for Decay and Regulates Cell Motility in Mouse Myoblasts
- A Sexual Ornament in Chickens Is Affected by Pleiotropic Alleles at and , Selected during Domestication
- Use of Allele-Specific FAIRE to Determine Functional Regulatory Polymorphism Using Large-Scale Genotyping Arrays
- Novel Loci for Metabolic Networks and Multi-Tissue Expression Studies Reveal Genes for Atherosclerosis
- The Genetic Basis of Pollinator Adaptation in a Sexually Deceptive Orchid
- Uncovering the Genome-Wide Transcriptional Responses of the Filamentous Fungus to Lignocellulose Using RNA Sequencing
- Inheritance Beyond Plain Heritability: Variance-Controlling Genes in
- The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits
- Reprogramming to Pluripotency Can Conceal Somatic Cell Chromosomal Instability
- Condensin II Promotes the Formation of Chromosome Territories by Inducing Axial Compaction of Polyploid Interphase Chromosomes
- PTEN Negatively Regulates MAPK Signaling during Vulval Development
- A Dynamic Response Regulator Protein Modulates G-Protein–Dependent Polarity in the Bacterium
- Population Genomics of the Facultatively Mutualistic Bacteria and
- Components of a Fanconi-Like Pathway Control Pso2-Independent DNA Interstrand Crosslink Repair in Yeast
- Polysome Profiling in Liver Identifies Dynamic Regulation of Endoplasmic Reticulum Translatome by Obesity and Fasting
- Stromal Liver Kinase B1 [STK11] Signaling Loss Induces Oviductal Adenomas and Endometrial Cancer by Activating Mammalian Target of Rapamycin Complex 1
- Reprogramming of H3K27me3 Is Critical for Acquisition of Pluripotency from Cultured Tissues
- Transgene Induced Co-Suppression during Vegetative Growth in
- Hox and Sex-Determination Genes Control Segment Elimination through EGFR and Activity
- A Quantitative Comparison of the Similarity between Genes and Geography in Worldwide Human Populations
- Minibrain/Dyrk1a Regulates Food Intake through the Sir2-FOXO-sNPF/NPY Pathway in and Mammals
- Comparative Analysis of Regulatory Elements between and by Genome-Wide Transcription Start Site Profiling
- Simple Methods for Generating and Detecting Locus-Specific Mutations Induced with TALENs in the Zebrafish Genome
- S Phase–Coupled E2f1 Destruction Ensures Homeostasis in Proliferating Tissues
- Cell-Nonautonomous Signaling of FOXO/DAF-16 to the Stem Cells of
- The Mi-2 Chromatin-Remodeling Factor Regulates Higher-Order Chromatin Structure and Cohesin Dynamics
- Comparative Analysis of the Genomes of Two Field Isolates of the Rice Blast Fungus
- Role of Mex67-Mtr2 in the Nuclear Export of 40S Pre-Ribosomes
- Genetic Modulation of Lipid Profiles following Lifestyle Modification or Metformin Treatment: The Diabetes Prevention Program
- HAL-2 Promotes Homologous Pairing during Meiosis by Antagonizing Inhibitory Effects of Synaptonemal Complex Precursors
- SLX-1 Is Required for Maintaining Genomic Integrity and Promoting Meiotic Noncrossovers in the Germline
- Phylogenetic and Transcriptomic Analysis of Chemosensory Receptors in a Pair of Divergent Ant Species Reveals Sex-Specific Signatures of Odor Coding
- Reduced Prostasin (CAP1/PRSS8) Activity Eliminates HAI-1 and HAI-2 Deficiency–Associated Developmental Defects by Preventing Matriptase Activation
- Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes
- Identification of Human Proteins That Modify Misfolding and Proteotoxicity of Pathogenic Ataxin-1
- and Link Transcription of Phospholipid Biosynthetic Genes to ER Stress and the UPR
- CDK9 and H2B Monoubiquitination: A Well-Choreographed Dance
- Rare Copy Number Variations in Adults with Tetralogy of Fallot Implicate Novel Risk Gene Pathways
- Ccdc94 Protects Cells from Ionizing Radiation by Inhibiting the Expression of
- NOL11, Implicated in the Pathogenesis of North American Indian Childhood Cirrhosis, Is Required for Pre-rRNA Transcription and Processing
- Human Developmental Enhancers Conserved between Deuterostomes and Protostomes
- A Luminal Glycoprotein Drives Dose-Dependent Diameter Expansion of the Hindgut Tube
- Melanophore Migration and Survival during Zebrafish Adult Pigment Stripe Development Require the Immunoglobulin Superfamily Adhesion Molecule Igsf11
- Dynamic Distribution of Linker Histone H1.5 in Cellular Differentiation
- Combining Comparative Proteomics and Molecular Genetics Uncovers Regulators of Synaptic and Axonal Stability and Degeneration
- Chemical Genetics Reveals a Specific Requirement for Cdk2 Activity in the DNA Damage Response and Identifies Nbs1 as a Cdk2 Substrate in Human Cells
- Experimental Relocation of the Mitochondrial Gene to the Nucleus Reveals Forces Underlying Mitochondrial Genome Evolution
- Rates of Gyrase Supercoiling and Transcription Elongation Control Supercoil Density in a Bacterial Chromosome
- Mutations in a P-Type ATPase Gene Cause Axonal Degeneration
- A General G1/S-Phase Cell-Cycle Control Module in the Flowering Plant
- Multiple Roles and Interactions of and in Development of the Respiratory System
- UNC-40/DCC, SAX-3/Robo, and VAB-1/Eph Polarize F-Actin during Embryonic Morphogenesis by Regulating the WAVE/SCAR Actin Nucleation Complex
- Epigenetic Remodeling of Meiotic Crossover Frequency in DNA Methyltransferase Mutants
- Modulating the Strength and Threshold of NOTCH Oncogenic Signals by
- Loss of Axonal Mitochondria Promotes Tau-Mediated Neurodegeneration and Alzheimer's Disease–Related Tau Phosphorylation Via PAR-1
- Acetyl-CoA-Carboxylase Sustains a Fatty Acid–Dependent Remote Signal to Waterproof the Respiratory System
- ATXN2-CAG42 Sequesters PABPC1 into Insolubility and Induces FBXW8 in Cerebellum of Old Ataxic Knock-In Mice
- Cohesin Rings Devoid of Scc3 and Pds5 Maintain Their Stable Association with the DNA
- The MicroRNA Inhibits Calcium Signaling by Targeting the TIR-1/Sarm1 Adaptor Protein to Control Stochastic L/R Neuronal Asymmetry in
- Rapid-Throughput Skeletal Phenotyping of 100 Knockout Mice Identifies 9 New Genes That Determine Bone Strength
- The Genes Define Unique Classes of Two-Partner Secretion and Contact Dependent Growth Inhibition Systems
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes
- It's All in the Timing: Too Much E2F Is a Bad Thing
- Variation of Contributes to Dog Breed Skull Diversity
- The PARN Deadenylase Targets a Discrete Set of mRNAs for Decay and Regulates Cell Motility in Mouse Myoblasts
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy