#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Condensin II Promotes the Formation of Chromosome Territories by Inducing Axial Compaction of Polyploid Interphase Chromosomes


The eukaryotic nucleus is both spatially and functionally partitioned. This organization contributes to the maintenance, expression, and transmission of genetic information. Though our ability to probe the physical structure of the genome within the nucleus has improved substantially in recent years, relatively little is known about the factors that regulate its organization or the mechanisms through which specific organizational states are achieved. Here, we show that Drosophila melanogaster Condensin II induces axial compaction of interphase chromosomes, globally disrupts interchromosomal interactions, and promotes the dispersal of peri-centric heterochromatin. These Condensin II activities compartmentalize the nucleus into discrete chromosome territories and indicate commonalities in the mechanisms that regulate the spatial structure of the genome during mitosis and interphase.


Vyšlo v časopise: Condensin II Promotes the Formation of Chromosome Territories by Inducing Axial Compaction of Polyploid Interphase Chromosomes. PLoS Genet 8(8): e32767. doi:10.1371/journal.pgen.1002873
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002873

Souhrn

The eukaryotic nucleus is both spatially and functionally partitioned. This organization contributes to the maintenance, expression, and transmission of genetic information. Though our ability to probe the physical structure of the genome within the nucleus has improved substantially in recent years, relatively little is known about the factors that regulate its organization or the mechanisms through which specific organizational states are achieved. Here, we show that Drosophila melanogaster Condensin II induces axial compaction of interphase chromosomes, globally disrupts interchromosomal interactions, and promotes the dispersal of peri-centric heterochromatin. These Condensin II activities compartmentalize the nucleus into discrete chromosome territories and indicate commonalities in the mechanisms that regulate the spatial structure of the genome during mitosis and interphase.


Zdroje

1. CremerT, CremerM, DietzelS, MullerS, SoloveiI, et al. (2006) Chromosome territories–a functional nuclear landscape. Curr Opin Cell Biol 18: 307–16.

2. GotoB, OkazakiK, NiwaO (2001) Cytoplasmic microtubular system implicated in de novo formation of a Rabl-like orientation of chromosomes in fission yeast. J Cell Sci 114: 2427–35.

3. BystrickyK, LarocheT, van HouweG, BlaszczykM, GasserSM (2005) Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J Cell Biol 168: 375–87.

4. PecinkaA, SchubertV, MeisterA, KrethG, KlatteM, et al. (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113: 258–69.

5. TanabeH, MullerS, NeusserM, von HaseJ, CalcagnoE, et al. (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99: 4424–9.

6. RajapakseI, PerlmanMD, ScalzoD, KooperbergC, GroudineM, et al. (2009) The emergence of lineage-specific chromosomal topologies from coordinate gene regulation. Proc Natl Acad Sci USA 106: 6679–84.

7. Lieberman-AidenE, van BerkumNL, WilliamsL, ImakaevM, RagoczyT, et al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326: 289–93.

8. SextonT, YaffeE, KenigsbergE, BantigniesF, LeblancB, et al. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148: 458–72.

9. CremerT, CremerM (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2: a003889.

10. BártováE, KozubekS (2006) Nuclear architecture in the light of gene expression and cell differentiation studies. Biol Cell 98: 323–36.

11. MisteliT (2005) Concepts in nuclear architecture. Bioessays 27: 477–87.

12. ZinkD, CermerT, SaffrichR, FischerR, TrendelenburgMF, et al. (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102: 241–51.

13. StadlerS, SchnappV, MayerR, SteinS, CermerC, et al. (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol 5: 44.

14. MisteliT (2007) Beyond the sequence: cellular organization of genome function. Cell 128: 787–800.

15. van DrielR, FranszP (2004) Nuclear architecture and genome functioning in plants and animals: what can we learn from both? Exp Cell Res 296: 86–90.

16. ShawPJ, AbranchesR, Paula SantosA, BevenAF, StogerE, et al. (2002) The architecture of interphase chromosomes and nucleolar transcription sites in plants. J Struct Biol 140: 31–8.

17. RablC (1885) Uber Zelltheilung. Morphol. Jahrbuch 10: 214–330.

18. CremerT, CremerC, BaumannH, LuedtkeEK, SperlingK, et al. (1982) Rabl's model of the interphase chromosome arrangement tested in Chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. Hum Genet 60: 46–56.

19. HiraokaY, DernburgAF, ParmeleeSJ, RykowskiMC, et al. (1993) The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis. J Cell Biol 120: 591–600.

20. MarshallWF, DernburgAF, HarmonB, AgardDA, SedatJW (1996) Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell 7: 825–42.

21. HochstrasserM, SedatJW (1987) Three-dimensional organization of Drosophila melanogaster interphase nuclei. I. Tissue-specific aspects of polytene nuclear architecture. J Cell Biol 104: 1455–70.

22. VazquezJ, BelmontAS, SedatJW (2002) The dynamics of homologous chromosome pairing during male Drosophila meiosis. Curr. Biol 12: 1473–83.

23. DejKJ, SpradlingAC (1999) The endocycle controls nurse cell polytene chromosome structure during Drosophila oogenesis. Development 126: 293–303.

24. KimuraK, HiranoT (1997) ATP-dependent positive supercoiling of DNA by 13S Condensin: a biochemical implication for chromosome condensation. Cell 90: 625–34.

25. HiranoT (2005) Condensins: organizing and segregating the genome. Curr Biol 15: 265–75.

26. HartlTA, SweeneySJ, KneplerPJ, BoscoG (2008) Condensin II resolves chromosomal associations to enable anaphase I segregation in Drosophila male meiosis. PLoS Genet 4: e1000228 doi:10.1371/journal.pgen.1000228.

27. FazzioTG, PanningB (2010) Condensin complexes regulate mitotic progression and interphase chromatin structure in embryonic stem cells. J Cell Biol 188: 491–503.

28. HartlTA, SmithHF, BoscoG (2008) Chromosome alignment and transvection are antagonized by Condensin II. Science 322: 1384–7.

29. HirotaT, GerlichD, KochB, EllenbergJ, PetersJM (2004) Distinct functions of Condensin I and II in mitotic chromosome assembly. J Cell Sci 117: 6435–45.

30. YuHG, KoshlandDE (2003) Meiotic Condensin is required for proper chromosome compaction, SC assembly, and resolution of recombination-dependent chromosome linkages. J Cell Biol 163: 937–47.

31. MetsDG, MeyerBJ (2009) Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure. Cell 139: 73–86.

32. JoyceEF, WilliamsBR, XieT, WuCT (2012) Identification of Genes That Promote or Antagonize Somatic Homolog Pairing Using a High-Throughput FISH-Based Screen. PLoS Genet 8: e1002667 doi:10.1371/journal.pgen.1002667.

33. LillyMA, SpradlingAC (1996) The Drosophila endocycle is controlled by cyclin E and lacks a checkpoint ensuring S-phase completion. Genes Dev 19: 2514–26.

34. RoyzmanI, Hayashi-HagiharaA, DeiKJ, BoscoG, LeeJT, et al. (2002) The E2F cell cycle regulator is required for Drosophila nurse cell DNA replication and apoptosis. Mech. Dev 199: 225–37.

35. DernburgAF, BromanKW, FungJC, MarshallWF, PhilipsJ, et al. (1996) Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85: 745–59.

36. TumbarT, BelmontAS (2001) Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol 3: 134–9.

37. CavalliG (2007) Chromosome kissing. Curr Opin Genet Dev 17: 443–50.

38. BoutanaevAM, KalmykovaAI, ShevelyovYY, NurminskyDI (2002) Large clusters of co-expressed genes in the Drosophila genome. Nature 420: 666–9.

39. HiranoT (2006) At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Bio 5: 311–22.

40. LeeAM, WuCT (2006) Enhancer-promoter communication at the yellow gene of Drosophila melanogaster: diverse promoters participate in and regulate trans interactions. Genetics 4: 1867–80.

41. MorrisJR, PetrovDA, LeeAM, WuCT (2004) Enhancer choice in cis and in trans in Drosophila melanogaster: role of the promoter. Genetics 4: 1739–47.

42. ShintomiK, HiranoT (2011) The relative ratio of condensin I to II determines chromosome shapes. Genes Dev 25(14):1464–9.

43. GreenLC, KalitsisP, ChangTM, CipeticM, KimJH, et al. (2012) Contrasting Roles of condensing I and condensing II in mitotic chromosome formation J Cell Sci. 125(Pt6):1591–604.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#