#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Gene Conversion Occurs within the Mating-Type Locus of during Sexual Reproduction


Meiotic recombination of sex chromosomes is thought to be repressed in organisms with heterogametic sex determination (e.g. mammalian X/Y chromosomes), due to extensive divergence and chromosomal rearrangements between the two chromosomes. However, proper segregation of sex chromosomes during meiosis requires crossing-over occurring within the pseudoautosomal regions (PAR). Recent studies reveal that recombination, in the form of gene conversion, is widely distributed within and may have played important roles in the evolution of some chromosomal regions within which recombination was thought to be repressed, such as the centromere cores of maize. Cryptococcus neoformans, a major human pathogenic fungus, has an unusually large mating-type locus (MAT, >100 kb), and the MAT alleles from the two opposite mating-types show extensive nucleotide sequence divergence and chromosomal rearrangements, mirroring characteristics of sex chromosomes. Meiotic recombination was assumed to be repressed within the C. neoformans MAT locus. A previous study identified recombination hot spots flanking the C. neoformans MAT, and these hot spots are associated with high GC content. Here, we investigated a GC-rich intergenic region located within the MAT locus of C. neoformans to establish if this region also exhibits unique recombination behavior during meiosis. Population genetics analysis of natural C. neoformans isolates revealed signals of homogenization spanning this GC-rich intergenic region within different C. neoformans lineages, consistent with a model in which gene conversion of this region during meiosis prevents it from diversifying within each lineage. By analyzing meiotic progeny from laboratory crosses, we found that meiotic recombination (gene conversion) occurs around the GC-rich intergenic region at a frequency equal to or greater than the meiotic recombination frequency observed in other genomic regions. We discuss the implications of these findings with regards to the possible functional and evolutionary importance of gene conversion within the C. neoformans MAT locus and, more generally, in fungi.


Vyšlo v časopise: Gene Conversion Occurs within the Mating-Type Locus of during Sexual Reproduction. PLoS Genet 8(7): e32767. doi:10.1371/journal.pgen.1002810
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002810

Souhrn

Meiotic recombination of sex chromosomes is thought to be repressed in organisms with heterogametic sex determination (e.g. mammalian X/Y chromosomes), due to extensive divergence and chromosomal rearrangements between the two chromosomes. However, proper segregation of sex chromosomes during meiosis requires crossing-over occurring within the pseudoautosomal regions (PAR). Recent studies reveal that recombination, in the form of gene conversion, is widely distributed within and may have played important roles in the evolution of some chromosomal regions within which recombination was thought to be repressed, such as the centromere cores of maize. Cryptococcus neoformans, a major human pathogenic fungus, has an unusually large mating-type locus (MAT, >100 kb), and the MAT alleles from the two opposite mating-types show extensive nucleotide sequence divergence and chromosomal rearrangements, mirroring characteristics of sex chromosomes. Meiotic recombination was assumed to be repressed within the C. neoformans MAT locus. A previous study identified recombination hot spots flanking the C. neoformans MAT, and these hot spots are associated with high GC content. Here, we investigated a GC-rich intergenic region located within the MAT locus of C. neoformans to establish if this region also exhibits unique recombination behavior during meiosis. Population genetics analysis of natural C. neoformans isolates revealed signals of homogenization spanning this GC-rich intergenic region within different C. neoformans lineages, consistent with a model in which gene conversion of this region during meiosis prevents it from diversifying within each lineage. By analyzing meiotic progeny from laboratory crosses, we found that meiotic recombination (gene conversion) occurs around the GC-rich intergenic region at a frequency equal to or greater than the meiotic recombination frequency observed in other genomic regions. We discuss the implications of these findings with regards to the possible functional and evolutionary importance of gene conversion within the C. neoformans MAT locus and, more generally, in fungi.


Zdroje

1. MalkovaASwansonJGermanMMcCuskerJHHousworthEA 2004 Gene conversion and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII. Genetics 168 49 63

2. CopenhaverGPHousworthEAStahlFW 2002 Crossover interference in Arabidopsis. Genetics 160 1631 1639

3. HauboldBKroymannJRatzkaAMitchell-OldsTWieheT 2002 Recombination and gene conversion in a 170-kb genomic region of Arabidopsis thaliana. Genetics 161 1269 1278

4. HillikerAJClarkSHChovnickA 1991 The effect of DNA sequence polymorphisms on intragenic recombination in the rosy locus of Drosophila melanogaster. Genetics 129 779 781

5. FrisseLHudsonRRBartoszewiczAWallJDDonfackJ 2001 Gene conversion and different population histories may explain the contrast between polymorphism and linkage disequilibrium levels. The American Journal of Human Genetics 69 831 843

6. HaberJEIraGMalkovaASugawaraN 2004 Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday's model. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 359 79 86

7. ChenJ-MCooperDNChuzhanovaNFerecCPatrinosGP 2007 Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8 762 775

8. ColeFKauppiLLangeJRoigIWangR 2012 Homeostatic control of recombination is implemented progressively in mouse meiosis. Nat Cell Biol 14 424 430

9. NishantKTChenCShinoharaMShinoharaAAlaniE 2010 Genetic analysis of baker's yeast Msh4-Msh5 reveals a threshold crossover level for meiotic viability. PLoS Genet 6 e1001083 doi:10.1371/journal.pgen.1001083

10. PetesTD 2001 Meiotic recombination hot spots and cold spots. Nat Rev Genet 2 360 369

11. JeffreysAJKauppiLNeumannR 2001 Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 29 217 222

12. MyersSBottoloLFreemanCMcVeanGDonnellyP 2005 A fine-scale map of recombination rates and hotspots across the human genome. Science 310 321 324

13. HsuehYPIdnurmAHeitmanJ 2006 Recombination hotspots flank the Cryptococcus mating-type locus: implications for the evolution of a fungal sex chromosome. PLoS Genet 2 e184 doi:10.1371/journal.pgen.0020184

14. ShiJWolfSEBurkeJMPrestingGGRoss-IbarraJ 2010 Widespread gene conversion in centromere cores. PLoS Biol 8 e1000327 doi:10.1371/journal.pbio.1000327

15. SymingtonLSPetesTD 1988 Meiotic recombination within the centromere of a yeast chromosome. Cell 52 237 240

16. RozenSSkaletskyHMarszalekJDMinxPJCordumHS 2003 Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 423 873 876

17. SkaletskyHKuroda-KawaguchiTMinxPJCordumHSHillierL 2003 The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423 825 837

18. Jill PeconSSanner-WachterLO'BrienSJ 2000 Novel gene conversion between X-Y homologues located in the nonrecombining region of the Y chromosome in Felidae (Mammalia). PNAS 97 5307 5312

19. FullertonSMBernardo CarvalhoAClarkAG 2001 Local rates of recombination are positively correlated with GC content in the human genome. Molecular Biology and Evolution 18 1139 1142

20. Eyre-WalkerAHurstLD 2001 The evolution of isochores. Nat Rev Genet 2 549 555

21. Marsolier-KergoatM-CYeramianE 2009 GC content and recombination: Reassessing the causal effects for the Saccharomyces cerevisiae genome. Genetics 183 31 38

22. MeunierJDuretL 2004 Recombination drives the evolution of GC-content in the human genome. Molecular Biology and Evolution 21 984 990

23. PerryJAshworthA 1999 Evolutionary rate of a gene affected by chromosomal position. Current Biology 9 987 S983

24. MaraisG 2003 Biased gene conversion: implications for genome and sex evolution. Trends in Genetics 19 330 338

25. GaltierNPiganeauGMouchiroudDDuretL 2001 GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics 159 907 911

26. WebsterMTAxelssonEEllegrenH 2006 Strong regional biases in nucleotide substitution in the chicken genome. Molecular Biology and Evolution 23 1203 1216

27. BirdsellJA 2002 Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Molecular Biology and Evolution 19 1181 1197

28. Matallana-SurgetSMeadorJAJouxFDoukiT 2008 Effect of the GC content of DNA on the distribution of UVB-induced bipyrimidine photoproducts. Photochemical & Photobiological Sciences 7 794 801

29. KauppiLBarchiMBaudatFRomanienkoPJKeeneyS 2011 Distinct properties of the XY pseudoautosomal region crucial for male meiosis. Science 331 916 920

30. OttoSPPannellJRPeichelCLAshmanT-LCharlesworthD 2011 About PAR: The distinct evolutionary dynamics of the pseudoautosomal region. Trends in Genetics 27 358 367

31. AlexanderI 2011 Sex and speciation: The paradox that non-recombining DNA promotes recombination. Fungal Biology Reviews 25 121 127

32. D'SouzaCAKronstadJWTaylorGWarrenRYuenM 2011 Genome variation in Cryptococcus gattii, an emerging pathogen of immunocompetent hosts. mBio 2 e00342 00310

33. LoftusBJFungERoncagliaPRowleyDAmedeoP 2005 The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307 1321 1324

34. ShimodairaHHasegawaM 1999 Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16 1114

35. ManceraEBourgonRBrozziAHuberWSteinmetzLM 2008 High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454 479 485

36. MullerHJ 1964 The relation of recombination to mutational advance. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 1 2 9

37. FelsensteinJ 1974 The evolutionary advantage of recombination. Genetics 78 737 756

38. GaltierN 2004 Recombination, GC-content and the human pseudoautosomal boundary paradox. Trends in Genetics 20 347 349

39. MarraREHuangJCFungENielsenKHeitmanJ 2004 A genetic linkage map of Cryptococcus neoformans variety neoformans serotype D (Filobasidiella neoformans). Genetics 167 619 631

40. SunSXuJ 2007 Genetic analyses of a hybrid cross between serotypes A and D strains of the human pathogenic fungus Cryptococcus neoformans. Genetics 177 1475 1486

41. FraserJADiezmannSSubaranRLAllenALengelerKB 2004 Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLoS Biol 2 e384 doi:10.1371/journal.pbio.0020384

42. HaberJE 1998 Mating-type gene switching in Saccharomyces cerevisiae. Annual Review of Genetics 32 561 599

43. StrathernJNKlarAJSHicksJBAbrahamJAIvyJM 1982 Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31 183 192

44. Birky-JrCWWalshJB 1992 Biased gene conversion, copy number, and apparent mutation rate differences within chloroplast and bacterial genomes. Genetics 130 677 683

45. KhakhlovaOBockR 2006 Elimination of deleterious mutations in plastid genomes by gene conversion. The Plant Journal 46 85 94

46. ConnallonTClarkAG 2010 Gene duplication, gene conversion and the evolution of the Y chromosome. Genetics 186 277 286

47. MaraisGABCamposPRAGordoI 2010 Can intra-Y gene conversion oppose the degeneration of the human Y chromosome? A simulation study. Genome Biology and Evolution 2 347 357

48. KellerPJKnopM 2009 Evolution of mutational robustness in the yeast genome: a link to essential genes and meiotic recombination hotspots. PLoS Genet 5 e1000533 doi:10.1371/journal.pgen.1000533

49. StöckMHornAGrossenCLindtkeDSermierR 2011 Ever-young sex chromosomes in European tree frogs. PLoS Biol 9 e1001062 doi:10.1371/journal.pbio.1001062

50. SloanDBAlversonAJChuckalovcakJPWuMMcCauleyDE 2012 Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 10 e1001241 doi:10.1371/journal.pbio.1001241

51. LinXLitvintsevaAPNielsenKPatelSFloydA 2007 αADα hybrids of Cryptococcus neoformans: evidence of same-sex mating in nature and hybrid fitness. PLoS Genet 3 e186 doi:10.1371/journal.pgen.0030186

52. LitvintsevaAPLinXTempletonIHeitmanJMitchellT 2007 Many globally isolated AD hybrid strains of Cryptococcus neoformans originated in Africa. PLoS Pathog 3 e114 doi:10.1371/journal.ppat.0030114

53. LitvintsevaAPMarraRENielsenKHeitmanJVilgalysR 2003 Evidence of sexual recombination among Cryptococcus neoformans serotype A isolates in sub-Saharan Africa. Eukaryot Cell 2 1162 1168

54. MooreTDEEdmanJC 1993 The α-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol Cell Biol 13 1962 1970

55. YanZHullCMHeitmanJSunSXuJ 2004 SXI1α controls uniparental mitochondrial inheritance in Cryptococcus neoformans. Current Biology 14 R743 744

56. YanZHullCMSunSHeitmanJXuJP 2007 The mating-type specific homeodomain genes SXI1α and SXI2a coordinately control uniparental mitochondrial inheritance in Cryptococcus neoformans. Current Genetics 51 187 195

57. SunSXuJ 2009 Chromosomal rearrangements between serotype A and D strains in Cryptococcus neoformans. PLoS ONE 4 e5524 doi:10.1371/journal.pone.0005524

58. LarkinMABlackshieldsGBrownNPChennaRMcGettiganPA 2007 Clustal W and Clustal X version 2.0. Bioinformatics 23 2947 2948

59. MaddisonDMaddisonW 1989 Interactive analysis of phylogeny and character evolution using the computer program MacClade. Folia Primatol (Basel) 53 190 202

60. TamuraKPetersonDPetersonNStecherGNeiM 2011 MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28 2731 2739

61. SwoffordD 2003 PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts

62. SawyerS 2007 GENECONV [version 1.81a]: A computer package for the statistical detection of gene conversion. Distributed by the author, Department of Mathematics, Washington University in St Louis, available at http://wwwmathwustledu/~sawyer/geneconv/

63. LanderESGreenPAbrahamsonJBarlowADalyMJ 1987 MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1 174 181

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#