#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Comparative Genomics of Plant-Associated spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions


We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45–52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.


Vyšlo v časopise: Comparative Genomics of Plant-Associated spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions. PLoS Genet 8(7): e32767. doi:10.1371/journal.pgen.1002784
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002784

Souhrn

We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45–52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.


Zdroje

1. WuXMonchySTaghaviSZhuWRamosJ 2010 Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35 299 323

2. LessieTGPhibbsPVJr 1984 Alternative pathways of carbohydrate utilization in Pseudomonads. Annu Rev Microbiol 38 359 388

3. GrossHLoperJE 2009 Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26 1408 1446

4. RaaijmakersJMVlamiMde SouzaJT 2002 Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81 537 547

5. BenderCLAlarcón-ChaidezFGrossDC 1999 Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthases. Microbiol Mol Biol Rev 63 266 292

6. WellerDM 1988 Biological control of soilborne plant pathogens in the rhizospere with bacteria. Annu Rev Phytopathol 26 379 407

7. LugtenbergBKamilovaF 2009 Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63 541 556

8. HaasDDefagoG 2005 Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3 307 319

9. WellerDMRaaijmakersJMGardenerBBMThomashowLS 2002 Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40 309 348

10. MendesRKruijtMde BruijnIDekkersEvan der VoortM 2011 Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332 1097 1100

11. MazzolaM 2004 Assessment and management of soil microbial community structure for disease suppression. Annu Rev Phytopathol 42 35 59

12. StockwellVOStackJP 2007 Using Pseudomonas spp. for integrated biological control. Phytopathology 97 244 249

13. MuletMLalucatJGarcía-ValdésE 2010 DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12 1513 1530

14. GuttmanDSMorganRLWangPW 2008 The evolution of the Pseudomonads. FatmiMBCollmerAIacobellisNSMansfieldJWMurilloJ Pseudomonas syringae pathovars and related pathogens – identification, epidemiology and genomics Dordrecht Springer 307 319

15. YamamotoSKasaiHArnoldDLJacksonRWVivianA 2000 Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology (Reading, England) 146 Pt 10 2385 2394

16. HaasDKeelC 2003 Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41 117 153

17. MavrodiDVBlakenfeldtWThomashowLS 2006 Phenazine compounds in fluorescent Pseudomonas spp.: biosynthesis and regulation. Annu Rev Phytopathol 44 417 445

18. PiersonLPiersonE 2010 Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86 1659 1670

19. WellerDMLandaBBMavrodiOVSchroederKLDe La FuenteL 2007 Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol (Stuttg) 9 4 20

20. RaaijmakersJMDe BruijnINybroeOOngenaM 2010 Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34 1037 1062

21. LoperJESchrothMN 1986 Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 76 386 389

22. SpaepenSVanderleydenJRemansR 2007 Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31 425 448

23. KangBRYangKYChoBHHanTHKimIS 2006 Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr Microbiol 52 473 476

24. XiaoZXuP 2007 Acetoin metabolism in bacteria. Crit Rev Microbiol 33 127 140

25. LeveauJHJGerardsS 2008 Discovery of a bacterial gene cluster for catabolism of the plant hormone indole 3-acetic acid. FEMS Microbiol Ecol 65 238 250

26. ArshadMFrankenbergerWTJ 1998 Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62 45 151

27. HanSHLeeSJMoonJHParkKHYangKY 2006 GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant-Microbe Interact 19 924 930

28. BakkerPAHMPieterseCMJvan LoonLC 2007 Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97 239 243

29. SilbyMWWinstanleyCGodfreySACLevySBJacksonRW 2011 Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35 652 680

30. BaltrusDANishimuraMTRomanchukAChangJHMukhtarMS 2011 Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Path 7 e1002132 doi:10.1371/journal.ppat.1002132

31. RametteAFrapolliMSauxMF-LGruffazCMeyerJ-M 2011 Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 34 180 188

32. SilbyMWCerdeño-TarragaAMVernikosGSGiddensSRJacksonRW 2009 Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 10 R51

33. PaulsenITPressCMRavelJKobayashiDYMyersGSA 2005 Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23 873 878

34. KimbrelJGivanSHalgrenACreasonAMillsD 2010 An improved, high-quality draft genome sequence of the germination-arrest factor-producing Pseudomonas fluorescens WH6. BMC Genomics 11 522

35. GrossHStockwellVOHenkelsMDNowak-ThompsonBLoperJE 2007 The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 14 53 63

36. LoperJEHenkelsMDShafferBTValerioteFAGrossH 2008 Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl Environ Microbiol 74 3085 3093

37. BrendelNPartida-MartinezLPScherlachKHertweckC 2007 A cryptic PKS-NRPS gene locus in the plant commensal Pseudomonas fluorescens Pf-5 codes for the biosynthesis of an antimitotic rhizoxin complex. Org Biomol Chem 5 2211 2213

38. ParretAHATemmermanKDe MotR 2005 Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 71 5197 5207

39. Pechy-TarrMBruckDMaurhoferMFischerEVogneC 2008 Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 10 2368 2386

40. BennasarAMuletMLalucatJGarcia-ValdesE 2010 PseudoMLSA: a database for multigenic sequence analysis of Pseudomonas species. BMC Microbiol 10 118

41. MavrodiDVPaulsenITRenQLoperJE 2007 Genomics of Pseudomonas fluorescens Pf-5. RamosJLFillouxA Pseudomonas, a model system in biology Spinger, The Netherlands Springer 3 30

42. NunvarJHuckovaTLichaI 2010 Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases: implications for REP evolution and dynamics in bacterial genomes. BMC Genomics 11 44

43. Aranda-OlmedoITobesRManzaneraMRamosJLMarquésS 2002 Species-specific repetitive extragenic palindromic (REP) sequences in Pseudomonas putida. Nucleic Acids Res 30 1826 1833

44. BertelsFRaineyPB 2011 Within-genome evolution of REPINs: a new family of miniature mobile DNA in bacteria. PLoS Genet 7 e1002132 doi:10.1371/journal.pgen.1002132

45. TobesRParejaE 2005 Repetitive extragenic palindromic sequences in the Pseudomonas syringae pv. tomato DC3000 genome: extragenic signals for genome reannotation. Res Microbiol 156 424 433

46. GilsonESaurinWPerrinDBachellierSHofnungM 1991 Palindromic units are part of a new bacterial interspersed mosaic element (BIME). Nucleic Acids Res 19 1375 1383

47. CeyssensP-JLavigneR 2010 Bacteriophages of Pseudomonas. Future Microbiol 5 1041 1055

48. RuerSStenderSFillouxAde BentzmannS 2007 Assembly of fimbrial structures in Pseudomonas aeruginosa: functionality and specificity of chaperone-usher machineries. J Bacteriol 189 3547 3555

49. KulasekaraHDVentreIKulasekaraBRLazdunskiAFillouxA 2005 A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55 368 380

50. ValletIOlsonJWLorySLazdunskiAFillouxA 2001 The chaperone/usher pathways of Pseudomonas aeruginosa: Identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci USA 98 6911 6916

51. ZhaoYMaZSundinGW 2005 Comparative genomic analysis of the pPT23A plasmid family of Pseudomonas syringae. J Bacteriol 187 2113 2126

52. CarterMQChenJLoryS 2010 The Pseudomonas aeruginosa pathogenicity island PAPI-1 is transferred via a novel type IV pilus. J Bacteriol 192 3249 3258

53. GuglielminiJQuintaisLGarcillán-BarciaMPde la CruzFRochaEPC 2011 The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet 7 e1002222 doi:10.1371/journal.pgen.1002222

54. MavrodiDVLoperJEPaulsenITThomashowLS 2009 Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol 9 8

55. GrissaIVergnaudGPourcelC 2007 CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35 W52 W57

56. Nowak-ThompsonBHammerPEHillDSStaffordJTorkewitzN 2003 2,5-dialkylresorcinol biosynthesis in Pseudomonas aurantiaca: novel head-to-head condensation of two fatty acid-derived precursors. J Bacteriol 185 860 869

57. RaaijmakersJMde BruijnIde KockMJD 2006 Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant-Microbe Interact 19 699 710

58. MazzolaMde BruijnICohenMFRaaijmakersJM 2009 Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl Environ Microbiol 75 6804 6811

59. de BruijnIde KockMJde WaardPvan BeekTARaaijmakersJM 2008 Massetolide A biosynthesis in Pseudomonas fluorescens. J Bacteriol 190 2777 2789

60. de BruijnIde KockMJDYangMde WaardPvan BeekTA 2007 Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63 417 428

61. LapougeKMario SchubertMAllainFHTDieter HaasD 2008 Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67 241 253

62. PedrasMSCIsmailNQuailJWBoyetchkoSM 2003 Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. Phytochemistry 62 1105 1114

63. ViscaPImperiFLamontIL 2007 Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15 22 30

64. CornelisPMatthijsSVan OeffelenL 2009 Iron uptake regulation in Pseudomonas aeruginosa. BioMetals 22 15 22

65. YouardZAMislinGLMajcherczykPASchalkIJReimmannC 2007 Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem 282 35546 35553

66. WuestWMSattelyESWalshCT 2009 Three siderophores from one bacterial enzymatic assembly line. J Am Chem Soc 131 5056 5057

67. Mercado-BlancoJvan der DriftKMOlssonPEThomas-OatesJEvan LoonLC 2001 Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183 1909 1920

68. BertiADThomasMG 2009 Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a. J Bacteriol 191 4594 4604

69. HassanKAJohnsonAShafferBTRenQKidarsaTA 2010 Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol 12 899 915

70. WandersmanCDelepelaireP 2004 Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58 611 647

71. Vallet-GelyIOpotaOBonifaceANovikovALemaitreB 2010 A secondary metabolite acting as a signalling molecule controls Pseudomonas entomophila virulence. Cell Microbiol 12 1666 1679

72. ArrebolaECazorlaFMRomeroDPerez-GarciaAde VicenteA 2007 A nonribosomal peptide synthetase gene (mgoA) of Pseudomonas syringae pv. syringae is involved in mangotoxin biosynthesis and is required for full virulence. Mol Plant-Microbe Interact 20 500 509

73. ArrebolaECarrionVCazorlaFPerez-GarciaAMurilloJ 2012 Characterisation of the mgo operon in Pseudomonas syringae pv. syringae UMAF0158 that is required for mangotoxin production. BMC Microbiol 12 10

74. CarriónVJArrebolaECazorlaFMMurilloJde VicenteA 2012 The mbo operon is specific and essential for biosynthesis of mangotoxin in Pseudomonas syringae. Plos ONE 7 e36709 doi:10.1371/journal.pone.0036709

75. CornelisP 2010 Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86 1637 1645

76. BhattGDennyTP 2004 Ralstonia solanacearum iron scavenging by the siderophore Staphyloferrin B is controlled by PhcA, the global virulence regulator. J Bacteriol 186 7896 7904

77. HertAPMarutaniMMomolMTRobertsPDOlsonSM 2009 Suppression of the bacterial spot pathogen Xanthomonas euvesicatoria on tomato leaves by an attenuated mutant of Xanthomonas perforans. Appl Environ Microbiol 75 3323 3330

78. ParretAHADe MotR 2002 Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other γ-proteobacteria. Trends Microbiol 10 107 112

79. Michel-BriandYBaysseC 2002 The pyocins of Pseudomonas aeruginosa. Biochimie 84 499 510

80. SanoYKobayashiMKageyamaM 1993 Functional domains of S-type pyocins deduced from chimeric molecules. J Bacteriol 175 6179 6185

81. BarreteauHBouhssAFourgeaudMMainardiJ-LTouzeT 2009 Human- and plant-pathogenic Pseudomonas species produce bacteriocins exhibiting colicin M-like hydrolase activity towards peptidoglycan precursors. J Bacteriol 191 3657 3664

82. DuquesneSDestoumieux-GarzonDPeduzziJRebuffatS 2007 Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24 708 734

83. CarrSWalkerDJamesRKleanthousCHemmingsAM 2000 Inhibition of a ribosome-inactivating ribonuclease: the crystal structure of the cytotoxic domain of colicin E3 in complex with its immunity protein. Structure 8 949 960

84. ChuangD-yChienY-cWuH-P 2007 Cloning and expression of the Erwinia carotovora subsp. carotovora gene encoding the low-molecular-weight bacteriocin Carocin S1. J Bacteriol 189 620 626

85. KöckJOlschlägerTKampRMBraunV 1987 Primary structure of colicin M, an inhibitor of murein biosynthesis. J Bacteriol 169 3358 3361

86. DimkpaCOZengJMcLeanJEBrittDWZhanJ 2012 Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78 1404 1410

87. KimYChoJ-YKukJ-HMoonJ-HChoJ-I 2004 Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, Chungkook-Jang. Curr Microbiol 48 312 317

88. WightmanFLightyDL 1982 Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiol Plantarum 55 17 24

89. OliveraERMinambresBGarciaBMunizCMorenoMA 1998 Molecular characterization of the phenylacetic acid metabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci USA 95 6419 6424

90. IsmailWEl-Said MohamedMWannerBLDatsenkoKAEisenreichW 2003 Functional genomics by NMR spectroscopy: Phenylacetate catabolism in Escherichia coli. Eur J Biochem 270 3047 3054

91. GlickBR 1995 The enhancement of plant growth by free-living bacteria. Can J Microbiol 41 109 117

92. DworkinMFosterJW 1958 Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75 592 603

93. RyuC-MFaragMAHuC-HReddyMSWeiH-X 2003 Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100 4927 4932

94. BlomqvistKNikkolaMLehtovaaraPSuihkoMLAiraksinenU 1993 Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol 175 1392 1404

95. RennaMCNajimudinNWinikLRZahlerSA 1993 Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol 175 3863 3875

96. NicholsonWL 2008 The Bacillus subtilis ydjL (bdhA) gene encodes acetoin teductase/2,3-butanediol dehydrogenase. Appl Environ Microbiol 74 6832 6838

97. NelsonDDuxburyT 2008 The distribution of acetohydroxyacid synthase in soil bacteria. Antonie Van Leeuwenhoek 93 123 132

98. BouchéNFrommH 2004 GABA in plants: just a metabolite? Trends Plant Sci 9 110 115

99. ShelpBJBownAWMcLeanMD 1999 Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4 446 452

100. ParkDHMirabellaRBronsteinPAPrestonGMHaringMA 2010 Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence. The Plant Journal 64 318 330

101. AndersonLMStockwellVOLoperJE 2004 An extracellular protease of Pseudomonas fluorescens inactivates antibiotics of Pantoea agglomerans. Phytopathology 94 1228 1234

102. StockwellVOJohnsonKBSugarDLoperJE 2011 Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology 101 113 123

103. NielsenMNSorensenJFelsJPedersenHC 1998 Secondary metabolite- and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl Environ Microbiol 64 3563 3569

104. FoldersJAlgraJRoelofsMSvan LoonLCTommassenJ 2001 Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein. J Bacteriol 183 7044 7052

105. NikaidouNKamioYKzakiK 1993 Molecular cloning and nucleotide sequence of the pectate lyase gene from Pseudomonas marginalis N6301. Bioscience Biotechnology and Biochemistry 57 957 960

106. FillouxA 2011 Protein secretion systems in Pseudomonas aeruginosa: an essay on diversity, evolution and function. Front Microbiol 2 155

107. CusanoAMBurlinsonPDeveauAVionPUrozS 2011 Pseudomonas fluorescens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environ Microbiol Rep 3 203 210

108. MavrodiDVJoeAMavrodiOVHassanKAWellerDM 2011 Structural and functional analysis of the type III secretion system from Pseudomonas fluorescens Q8r1-96. J Bacteriol 193 177 189

109. PrestonGMBertrandNRaineyPB 2001 Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol Microbiol 41 999 1014

110. CornelisGR 2010 The type III secretion injectisome, a complex nanomachine for intracellular ‘toxin’ delivery. Biol Chem 391 745 751

111. ArakiHTianDGossEMJakobKHalldorsdottirSS 2006 Presence/absence polymorphism for alternative pathogenicity islands in Pseudomonas viridiflava, a pathogen of Arabidopsis. Proc Natl Acad Sci USA 103 5887 5892

112. TroisfontainesPCornelisGR 2005 Type III secretion: More systems than you think. Physiology 20 326 339

113. HauserAR 2009 The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Micro 7 654 665

114. RaineyPB 1999 Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1 243 257

115. JacksonRWPrestonGMRaineyPB 2005 Genetic characterization of Pseudomonas fluorescens SBW25 rsp gene expression in the phytosphere and in vitro. J Bacteriol 187 8477 8488

116. RezzonicoFBinderCDefagoGMoenne-LoccozY 2005 The type III secretion system of biocontrol Pseudomonas fluorescens KD targets and phytopathogenic chromista Pythium ultimum and promotes cucumber protection. Mol Plant-Microbe Interact 18 991 1001

117. MatzCMorenoAMAlhedeMManefieldMHauserAR 2008 Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. ISME J 2 843 852

118. SchwarzSHoodRDMougousJD 2010 What is type VI secretion doing in all those bugs? Trends Microbiol 18 531 537

119. RussellABHoodRDBuiNKLeRouxMVollmerW 2011 Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475 343 347

120. RecordsAR 2011 The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant-Microbe Interact 24 751 757

121. BlevesSViarreVSalachaRMichelGPFFillouxA 2010 Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. Int J Med Microbiol 300 534 543

122. ZhengPSunJGeffersRZengA-P 2007 Functional characterization of the gene PA2384 in large-scale gene regulation in response to iron starvation in Pseudomonas aeruginosa. J Biotechnol 132 342 352

123. HsuFSchwarzSMougousJ 2009 TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol Microbiol 72 1111 1125

124. PieperRHuangS-TRobinsonJMClarkDJAlamiH 2009 Temperature and growth phase influence the outer-membrane proteome and the expression of a type VI secretion system in Yersinia pestis. Microbiology 155 498 512

125. ShalomGShawJGThomasMS 2007 In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 153 2689 2699

126. ffrench-ConstantRHDowlingAWaterfieldNR 2007 Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49 436 451

127. OlcottMHHenkelsMDRosenKLWalkerFLSnehB 2010 Lethality and developmental delay in Drosophila melanogaster larvae after ingestion of selected Pseudomonas fluorescens strains. PLoS ONE 5 e12504 doi:10.1371/journal.pone.0012504

128. LiuJ-RLinY-DChangS-TZengY-FWangS-L 2010 Molecular cloning and characterization of an insecticidal toxin from Pseudomonas taiwanensis. J Agric Food Chem 58 12343 12349

129. StanierRYPalleroniNJDoudoroffM 1966 The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43 159 271

130. PeixAValverdeARivasRIgualJMRamírez-BahenaM-H 2007 Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol 57 1286 1290

131. AchouakWSutraLHeulinTMeyerJMFrominN 2000 Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. Int J Syst Evol Microbiol 50 9 18

132. BarrettELSolanesRETangJSPalleroniNJ 1986 Pseudomonas fluorescens biovar V: its resolution into distinct component groups and the relationship of these groups to other psychotropic Pseudomonas associated with food spoilage. J Gen Microbiol 132 2709 2721

133. ShenXChenMHuHWangWPengH 2012 Genome sequence of Pseudomonas chlororaphis GP72, a root-colonizing biocontrol strain. J Bacteriol 194 1269 1270

134. Redondo-NietoMBarretMMorriseyJPGermaineKMartínez-GraneroF 2012 Genome sequence of the biocontrol strain Pseudomonas fluorescens F113. J Bacteriol 194 1273 1274

135. RongXGurelFBMeuliaTMcSpadden GardenerBB 2012 Draft genome sequences of the Pseudomonas fluorescens biocontrol strains Wayne1R and Wood1R. J Bacteriol 194 724 725

136. OrtetPBarakatMLalaounaDFochesatoSBarbeV 2011 Complete genome sequence of a beneficial plant root-associated bacterium, Pseudomonas brassicacearum. J Bacteriol 193 3146

137. KofoidEBergthorssonUSlechtaESRothJR 2003 Formation of an F′ plasmid by recombination between imperfectly repeated chromosomal Rep sequences: a closer look at an old friend (F′128 pro lac). J Bacteriol 185 660 663

138. GerhardtPMurrayRGEWoodWKriegNR 1994 Methods for general and molecular bacteriology Washington, D.C. American Society for Microbiology 791

139. SchaadNWJonesJBChunW 2001 Laboratory guide for identification of plant pathogenic bacteria St Paul, Minnesota USA APS Press 398

140. HagenMJStockwellVOWhistlerCAJohnsonKBLoperJE 2009 Stress tolerance and environmental fitness of Pseudomonas fluorescens A506, which has a mutation in RpoS. Phytopathology 99 679 688

141. FraserCMCasjensSHuangWMSuttonGGClaytonR 1997 Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390 580 586

142. GoldbergSMDJohnsonJBusamDFeldblyumTFerrieraS 2006 A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc Natl Acad Sci USA 103 11240 11245

143. PaulsenITSeshadriRNelsonKEEisenJAHeidelbergJF 2002 The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci USA 99 13148 13153

144. SalzbergSLDelcherALKasifSWhiteO 1998 Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26 544 548

145. TamuraKPetersonDPetersonNStecherGNeiM 2011 MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 2731 2739

146. HunterSJonesPMitchellAApweilerRAttwoodTK 2012 InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40 D306 D312

147. MedemaMHBlinKCimermancicPde JagerVZakrzewskiP 2011 antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39 W339 W346

148. RöttigMMedemaMHBlinKWeberTRauschC 2011 NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39 W362 367

149. SiguierPPerochonJLestradeLMahillonJChandlerM 2006 ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34 D32 D36

150. WinsorGLLamDKWFlemingLLoRWhitesideMD 2011 Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 39 D596 D600

151. DarlingAEMauBPernaNT 2010 progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5 e11147 doi:10.1371/journal.pone.0011147

152. RonquistFHuelsenbeckJP 2003 MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 1572 1574

153. RobbertseBYoderRJBoydAReevesJSpataforaJW 2011 Hal: an automated pipeline for phylogenetic analyses of genomic data. PLoS Currents Tree of Life doi:10.1371/currents.RRN1213

154. PriceALJonesNCPevznerPA 2005 De novo identification of repeat families in large genomes. Bioinformatics 21 i351 i358

155. MaurhoferMReimmannCSchmidli-SachererPHeebSHaasD 1998 Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Biol Control 678 684

156. HoangTTKarkhoff-SchweizerRRKutchmaAJSchweizerHP 1998 A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212 77 86

157. KidarsaTAGoebelNCZabriskieTMLoperJE 2011 Phloroglucinol mediates crosstalk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol 81 395 414

158. HartneySLMazurierSKidarsaTAQuecineMCLemanceauP 2011 TonB-dependent outer-membrane proteins and siderophore utilization in Pseudomonas fluorescens Pf-5. BioMetals 24 193 213

159. MeyerJMAbdallahMA 1978 The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification, and physicochemical properties. J Gen Microbiol 107 319 328

160. GordonSAWeberRP 1951 Colorimetric estimation of indoleacetic acid. Plant Physiol 26 192 195

161. SarniguetAKrausJHenkelsMDMuehlchenAMLoperJE 1995 The sigma factor sigma(s) affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci USA 92 12255 12259

162. HonmaMShimomuraT 1978 Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42 1825 1831

163. LangleyRAKadoCI 1972 Studies on Agrobacterium tumefaciens. Conditions for mutagenesis by N-methyl-N′-nitrosoguanidine and relationships of A. tumefaciens mutants to crown gall tumor induction. Mutat Res 14 277 286

164. ThomashowLSWellerDMBonsallRFPiersonLS 1990 Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56 908 912

165. TuckerBRadtkeCKwonSIAndersonAJ 1995 Suppression of bioremediation by Phanerochaete chrysosporium by soil factors. J Hazard Mater 41 251 265

166. KimMSKimYCChoBH 2004 Gene expression analysis in cucumber leaves primed by root colonization with Pseudomonas chlororaphis O6 upon challenge inoculation with Corynespora cassiicola. Plant Biol 6 105 108

167. HowellCRStipanovicRD 1979 Control of Rhizoctonia solani in cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69 480 482

168. HowellCRStipanovicRD 1980 Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70 712 715

169. RaaijmakersJMWellerDM 1998 Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant-Microbe Interact 11 144 152

170. VincentMNHarrisonLABrackinJMKovacevichPAMukerjiP 1991 Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Appl Environ Microbiol 57 2928 2934

171. WilsonMLindowSE 1993 Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology 83 117 123

172. MazzolaMZhaoXCohenMFRaaijmakersJM 2007 Cyclic lipopeptide surfactant production by Pseudomonas fluorescens SS101 is not required for suppression of complex Pythium spp. populations. Phytopathology 97 1348 1355

173. KruijtMHaTRaaijmakersJM 2009 Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol 107 546 556

174. de SouzaJTde BoerMde WaardPvan BeekTARaaijmakersJM 2003 Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69 7161 7172

175. TranHFickeAAsiimweTHofteMRaaijmakersJM 2007 Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175 731 742

176. KluepfelDAMcInnisTMZehrEI 1993 Involvement of root-colonizing bacteria in peach orchard soils suppressive of the nematode Criconemella xenoplax. Phytopathology 83 1250 1245

177. JonesDTTaylorWRThorntonJM 1992 The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8 275 282

178. BossisELemanceauPLatourXGardanL 2000 The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: current status and need for revision. Agronomie 20 51 63

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#