#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Allelic Heterogeneity and Trade-Off Shape Natural Variation for Response to Soil Micronutrient


As sessile organisms, plants have to cope with diverse environmental constraints that may vary through time and space, eventually leading to changes in the phenotype of populations through fixation of adaptive genetic variation. To fully comprehend the mechanisms of evolution and make sense of the extensive genotypic diversity currently revealed by new sequencing technologies, we are challenged with identifying the molecular basis of such adaptive variation. Here, we have identified a new variant of a molybdenum (Mo) transporter, MOT1, which is causal for fitness changes under artificial conditions of both Mo-deficiency and Mo-toxicity and in which allelic variation among West-Asian populations is strictly correlated with the concentration of available Mo in native soils. In addition, this association is accompanied at different scales with patterns of polymorphisms that are not consistent with neutral evolution and show signs of diversifying selection. Resolving such a case of allelic heterogeneity helps explain species-wide phenotypic variation for Mo homeostasis and potentially reveals trade-off effects, a finding still rarely linked to fitness.


Vyšlo v časopise: Allelic Heterogeneity and Trade-Off Shape Natural Variation for Response to Soil Micronutrient. PLoS Genet 8(7): e32767. doi:10.1371/journal.pgen.1002814
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002814

Souhrn

As sessile organisms, plants have to cope with diverse environmental constraints that may vary through time and space, eventually leading to changes in the phenotype of populations through fixation of adaptive genetic variation. To fully comprehend the mechanisms of evolution and make sense of the extensive genotypic diversity currently revealed by new sequencing technologies, we are challenged with identifying the molecular basis of such adaptive variation. Here, we have identified a new variant of a molybdenum (Mo) transporter, MOT1, which is causal for fitness changes under artificial conditions of both Mo-deficiency and Mo-toxicity and in which allelic variation among West-Asian populations is strictly correlated with the concentration of available Mo in native soils. In addition, this association is accompanied at different scales with patterns of polymorphisms that are not consistent with neutral evolution and show signs of diversifying selection. Resolving such a case of allelic heterogeneity helps explain species-wide phenotypic variation for Mo homeostasis and potentially reveals trade-off effects, a finding still rarely linked to fitness.


Zdroje

1. KarrenbergSWidmerA 2008 Ecologically relevant genetic variation from a non-Arabidopsis perspective. Curr Opin Plant Biol 11 156 162

2. NordEALynchJP 2009 Plant phenology: a critical controller of soil resource acquisition. J Exp Bot 60 1927 1937

3. BaxterIBrazeltonJNYuDHuangYSLahnerB 2010 A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genet 6 e1001193 doi:10.1371/journal.pgen.1001193

4. StinchcombeJRWeinigCUngererMOlsenKMMaysC 2004 A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proc Natl Acad Sci USA 101 4712 4717

5. TrontinCTisnéSBachLLoudetO 2011 What does Arabidopsis natural variation teach us (and does not teach us) about adaptation in plants? Curr Opin Plant Biol 14 225 231

6. HanikenneMTalkeINHaydonMJLanzCNolteA 2008 Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453 391 395

7. TurnerTLBourneECVon WettbergEJHuTTNuzhdinSV 2010 Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet 42 260 263

8. Alonso-BlancoCAartsMGBentsinkLKeurentjesJJReymondM 2009 What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21 1877 1896

9. AndersonJTWillisJHMitchell-OldsT 2011 Evolutionary genetics of plant adaptation. Trends Genet 27 258 266

10. HerefordJ 2009 A quantitative survey of local adaptation and fitness trade-offs. Am Nat 173 579 588

11. Fournier-LevelAKorteACooperMDNordborgMSchmittJ 2011 A map of local adaptation in Arabidopsis thaliana. Science 334 86 89

12. HancockAMBrachiBFaureNHortonMWJarymowyczLB 2011 Adaptation to climate across the Arabidopsis thaliana genome. Science 334 83 86

13. BaxterIMuthukumarBParkHCBuchnerPLahnerB 2008 Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet 4 e1000004 doi:10.1371/journal.pgen.1000004

14. TomatsuHTakanoJTakahashiHWatanabe-TakahashiAShibagakiN 2007 An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc Natl Acad Sci USA 104 18807 18812

15. MengelKKirkbyEA 2001 Principles of plant nutrition; Springer, editor Berlin Springer

16. MendelRR 2011 Cell biology of molybdenum in plants. Plant Cell Reports 30 1787 1797

17. Lango AllenHEstradaKLettreGBerndtSIWeedonMN 2010 Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467 832 838

18. WoodARHernandezDGNallsMAYaghootkarHGibbsJR 2011 Allelic heterogeneity and more detailed analyses of known loci explain additional phenotypic variation and reveal complex patterns of association. Hum Mol Genet 20 4082 4092

19. BeckJBSchmuthsHSchaalBA 2008 Native range genetic variation in Arabidopsis thaliana is strongly geographically structured and reflects Pleistocene glacial dynamics. Mol Ecol 17 902 915

20. FrancoisOBlumMGJakobssonMRosenbergNA 2008 Demographic history of european populations of Arabidopsis thaliana. PLoS Genet 4 e1000075 doi:10.1371/journal.pgen.1000075

21. PlattAHortonMHuangYSLiYAnastasioAE 2010 The scale of population structure in Arabidopsis thaliana. PLoS Genet 6 e1000843 doi:10.1371/journal.pgen.1000843

22. NordborgMHuTTIshinoYJhaveriJToomajianC 2005 The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3 e196 doi:10.1371/journal.pbio.0030196

23. BergelsonJRouxF 2010 Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nat Rev Genet 11 867 879

24. ElwellALGronwallDSMillerNDSpaldingEPDurham BrooksTL 2011 Separating parental environment from seed size effects on next generation growth and development in Arabidopsis. Plant Cell Environ 34 291 301

25. KrannitzPGAarssenLWDowJM 1991 The effect of genetically based differences in seed size on seedling survival in Arabidopsis thaliana (Brassicaceae). Am J Bot 78 446 450

26. KroymannJDonnerhackeSSchnabelrauchDMitchell-OldsT 2003 Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc Natl Acad Sci USA 100 14587 14592

27. TodescoMBalasubramanianSHuTTTrawMBHortonM 2010 Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465 632 636

28. ZhenYDhakalPUngererMC 2011 Fitness benefits and costs of cold acclimation in Arabidopsis thaliana. Am Nat 178 44 52

29. LoudetOChaillouSCamilleriCBouchezDDaniel-VedeleF 2002 Bay-0×Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor Appl Genet 104 1173 1184

30. LoudetOGaudonVTrubuilADaniel-VedeleF 2005 Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theor Appl Genet 110 742 753

31. KronholmILoudetOde MeauxJ 2010 Influence of mutation rate on estimators of genetic differentiation–lessons from Arabidopsis thaliana. BMC Genet 11 33

32. SoltanpourPPSchwabAP 1977 A new soil test for simultaneous extraction of macro- and micronutrients in alkaline soils. Comm Soil Sci Plant Anal 8 195 207

33. McKhannHICamilleriCBerardABataillonTDavidJL 2004 Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38 193 202

34. GodeCDecombeixIKosteckaAWasowiczPPauwelsM 2012 Nuclear microsatellite loci for Arabidopsis halleri (Brassicaceae), a model species to study plant adaptation to heavy metals. Am J Bot

35. CaldwellKSMichelmoreRW 2009 Arabidopsis thaliana genes encoding defense signaling and recognition proteins exhibit contrasting evolutionary dynamics. Genetics 181 671 684

36. CorkJMPuruggananMD 2005 High-diversity genes in the Arabidopsis genome. Genetics 170 1897 1911

37. NeiM 1987 Molecular Evolutionary Genetics; Press CU, editor New York Columbia Univ. Press

38. WattersonGA 1975 On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7 256 276

39. TajimaF 1989 Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123 585 595

40. McDonaldJHKreitmanM 1991 Adaptive protein evolution at the Adh locus in Drosophila. Nature 351 652 654

41. RandDMKannLM 1996 Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol 13 735 748

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#