#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Phylogenetic Origin of Coincided with the
Origin of Maternally Provisioned Germ Plasm and Pole Cells at the Base of the
Holometabola


The establishment of the germline is a critical, yet surprisingly evolutionarily

labile, event in the development of sexually reproducing animals. In the fly

Drosophila, germ cells acquire their fate early during

development through the inheritance of the germ plasm, a specialized maternal

cytoplasm localized at the posterior pole of the oocyte. The gene

oskar (osk) is both necessary and

sufficient for assembling this substance. Both maternal germ plasm and

oskar are evolutionary novelties within the insects, as the

germline is specified by zygotic induction in basally branching insects, and

osk has until now only been detected in dipterans. In order

to understand the origin of these evolutionary novelties, we used comparative

genomics, parental RNAi, and gene expression analyses in multiple insect

species. We have found that the origin of osk and its role in

specifying the germline coincided with the innovation of maternal germ plasm and

pole cells at the base of the holometabolous insects and that losses of

osk are correlated with changes in germline determination

strategies within the Holometabola. Our results indicate that the invention of

the novel gene osk was a key innovation that allowed the

transition from the ancestral late zygotic mode of germline induction to a

maternally controlled establishment of the germline found in many holometabolous

insect species. We propose that the ancestral role of osk was

to connect an upstream network ancestrally involved in mRNA localization and

translational control to a downstream regulatory network ancestrally involved in

executing the germ cell program.


Vyšlo v časopise: The Phylogenetic Origin of Coincided with the Origin of Maternally Provisioned Germ Plasm and Pole Cells at the Base of the Holometabola. PLoS Genet 7(4): e32767. doi:10.1371/journal.pgen.1002029
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002029

Souhrn

The establishment of the germline is a critical, yet surprisingly evolutionarily

labile, event in the development of sexually reproducing animals. In the fly

Drosophila, germ cells acquire their fate early during

development through the inheritance of the germ plasm, a specialized maternal

cytoplasm localized at the posterior pole of the oocyte. The gene

oskar (osk) is both necessary and

sufficient for assembling this substance. Both maternal germ plasm and

oskar are evolutionary novelties within the insects, as the

germline is specified by zygotic induction in basally branching insects, and

osk has until now only been detected in dipterans. In order

to understand the origin of these evolutionary novelties, we used comparative

genomics, parental RNAi, and gene expression analyses in multiple insect

species. We have found that the origin of osk and its role in

specifying the germline coincided with the innovation of maternal germ plasm and

pole cells at the base of the holometabolous insects and that losses of

osk are correlated with changes in germline determination

strategies within the Holometabola. Our results indicate that the invention of

the novel gene osk was a key innovation that allowed the

transition from the ancestral late zygotic mode of germline induction to a

maternally controlled establishment of the germline found in many holometabolous

insect species. We propose that the ancestral role of osk was

to connect an upstream network ancestrally involved in mRNA localization and

translational control to a downstream regulatory network ancestrally involved in

executing the germ cell program.


Zdroje

1. ExtavourCGAkamM

2003

Mechanisms of germ cell specification across the metazoans:

epigenesis and preformation.

Development

130

5869

5884

2. ExtavourCGM

2007

Evolution of the bilaterian germ line: lineage origin and

modulation of specification mechanisms.

Integrative and Comparative Biology

47

770

785

3. SchwalmF

1988

Insect Morphogenesis;

SauerHW

Basel

Karger

4. HegnerRW

1914

Studies on germ cells. I. The history of the germ cells in

insects with special reference to the Keimbahn-determinants. II. The origin

and significance of the Keimbahn-determinants in animals.

Journal of Morphology

25

375

509

5. MahowaldAP

2001

Assembly of the Drosophila germ plasm.

International Review of Cytology - a Survey of Cell Biology

Vol 203 203

187

213

6. HegnerRW

1911

Experiments with Chrysomelid Beetles. III. The Effects of Killing

Parts of the Eggs of Leptinotarsa decemlineata.

Biological Bulletin

20

237

251

7. IllmenseeKMahowaldAP

1974

Transplantation of Posterior Polar Plasm in Drosophila. Induction

of Germ Cells at the Anterior Pole of the Egg.

Proceedings of the National Academy of Sciences of the United States of

America

71

1016

1020

8. EphrussiALehmannR

1992

Induction of Germ-Cell Formation by Oskar.

Nature

358

387

392

9. RongoCLehmannR

1996

Regulated synthesis, transport and assembly of the Drosophila

germ plasm.

Trends in Genetics

12

102

109

10. ThomsonTLaskoP

2005

Tudor and its domains: germ cell formation from a Tudor

perspective.

Cell Research

15

281

291

11. Ewen-CampenBSchwagerEEExtavourCGM

2010

The Molecular Machinery of Germ Line

Specification.

Molecular Reproduction and Development

77

3

18

12. RazE

2000

The function and regulation of vasa-like genes in germ-cell

development.

Genome Biol

1

REVIEWS1017

13. KlagJ

1977

Differentiation of primordial germ cells in the embryonic

development of Thermobia domestica, Pack. (Thysanura): an ultrastructural

study.

Journal of Embryology and Experimental Morphology

38

14. MitoTNakamuraTSarashinaIChangCCOgawaS

2008

Dynamic expression patterns of vasa during embryogenesis in the

cricket Gryllus bimaculatus.

Development Genes and Evolution

218

381

387

15. ChangCCDeardenPAkamM

2002

Germ line development in the grasshopper Schistocerca gregaria:

vasa as a marker.

Developmental Biology

252

100

118

16. MellanbyH

1935

Memoirs: The Early Embryonic Development of Rhodnius prolixus

(Hemiptera, Heteroptera).

Quarterly Journal of Microscopical Science

s2

71

90

17. MiuraTBraendleCShingletonASiskGKambhampatiS

2003

A comparison of parthenogenetic and sexual embryogenesis of the

pea aphid Acyrthosiphon pisum (Hemiptera : Aphidoidea).

Journal of Experimental Zoology Part B-Molecular and Developmental

Evolution

295B

59

81

18. The International Aphid Genomics Consortium

2010

Genome Sequence of the Pea Aphid Acyrthosiphon

pisum.

PLoS Biol

8

e1000313

doi:10.1371/journal.pbio.1000313

19. XiaQYZhouZYLuCChengDJDaiFY

2004

A draft sequence for the genome of the domesticated silkworm

(Bombyx mori).

Science

306

1937

1940

20. RichardsSGibbsRAWeinstockGMBrownSJDenellR

2008

The genome of the model beetle and pest Tribolium

castaneum.

Nature

452

949

955

21. WeinstockGMRobinsonGEGibbsRAWorleyKCEvansJD

2006

Insights into social insects from the genome of the honeybee Apis

mellifera.

Nature

443

931

949

22. NagyLRiddifordLKiguchiK

1994

Morphogenesis in the Early Embryo of the Lepidopteran

Bombyx-Mori.

Developmental Biology

165

137

151

23. SchroderR

2006

vasa mRNA accumulates at the posterior pole during blastoderm

formation in the flour beetle Tribolium castaneum.

Development Genes and Evolution

216

277

283

24. NelsonJA

1915

The Embryology of the Honey Bee

Princeton

Princeton University Press

282

25. DeardenPK

2006

Germ cell development in the Honeybee (Apis mellifera); Vasa and

Nanos expression.

Bmc Developmental Biology

6

-

26. DeardenPKWilsonMJSablanLOsbornePWHavlerM

2006

Patterns of conservation and change in honey bee developmental

genes.

Genome Research

16

1376

1384

27. ShigenobuSBickelRDBrissonJAButtsTChangCC

2010

Comprehensive survey of developmental genes in the pea aphid,

Acyrthosiphon pisum: frequent lineage-specific duplications and losses of

developmental genes.

Insect Molecular Biology

19

47

62

28. BullAL

1982

Stages of Living Embryos in the Jewel Wasp

Mormoniella-(Nasonia)-Vitripennis-(Walker)(Hymenoptera,

Pteromalidae).

International Journal of Insect Morphology & Embryology

11

1

23

29. NakaoHHatakeyamaMLeeJMShimodaMKandaT

2006

Expression pattern of Bombyx vasa-like (BmVLG) protein and its

implications in germ cell development.

Development Genes and Evolution

216

94

99

30. KhilaAAbouheifE

2008

Reproductive constraint is a developmental mechanism that

maintains social harmony in advanced ant societies.

Proceedings of the National Academy of Sciences of the United States of

America

105

17884

17889

31. KhilaAAbouheifE

2010

Evaluating the role of reproductive constraints in ant social

evolution.

Philosophical Transactions of the Royal Society B-Biological

Sciences

365

617

630

32. JungE

1966

Untersuchungen am Ei des Speisebohnenkäfers

Bruchidius obtectus Say (Coleoptera).

Development Genes and Evolution

157

320

392

33. KuetheH-W

1966

Das Differenzierungszentrum als selbstregulierendes

Faktorensystem für den Aufbau der Keimanlage im Ei von Dermestes

frischi (Coleoptera) Roux' Archiv für

Entwicklungsmechanik.

157

121

302

34. SuzukiNShimizuSAndoH

1981

Early Embryology of the Alderfly, Sialis-Mitsuhashii Okamoto

(Megaloptera, Sialidae).

International Journal of Insect Morphology & Embryology

10

409

418

35. BergGJGassnerG

1978

Fine structure of the blastoderm embryo of the pink bollworm,

Pectinophora Gossypiella (Saunders) (lepidoptera:

Gelechiidae).

International Journal of Insect Morphology and Embryology

7

81

105

36. JuhnJMarinottiOCalvoEJamesAA

2008

Gene structure and expression of nanos (nos) and oskar (osk)

orthologues of the vector mosquito, Culex quinquefasciatus.

Insect Molecular Biology

17

545

552

37. JuhnJJamesAA

2006

oskar gene expression in the vector mosquitoes, Anopheles gambiae

and Aedes aegypti.

Insect Molecular Biology

15

363

372

38. WerrenJHRichardsSDesjardinsCANiehuisOGadauJ

2010

Functional and Evolutionary Insights from the Genomes of Three

Parasitoid Nasonia Species.

Science

327

343

348

39. LynchJADesplanC

2006

A method for parental RNA interference in the wasp Nasonia

vitripennis.

Nature Protocols

1

486

494

40. SavardJTautzDRichardsSWeinstockGMGibbsRA

2006

Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the

base of the radiation of Holometabolous insects.

Genome Research

16

1334

1338

41. WiegmannBMTrautweinMDKimJWCasselBKBertoneMA

2009

Single-copy nuclear genes resolve the phylogeny of the

holometabolous insects.

Bmc Biology

7

-

42. AltschulSFGishWMillerWMyersEWLipmanDJ

1990

Basic local alignment search tool.

J Mol Biol

215

403

410

43. MarkussenFHMichonAMBreitwieserWEphrussiA

1995

Translational Control of Oskar Generates Short Osk, the Isoform

That Induces Pole Plasm Assembly.

Development

121

3723

3732

44. SuyamaRJennyACuradoSBerkelWPVEphrussiA

2009

The actin-binding protein Lasp promotes Oskar accumulation at the

posterior pole of the Drosophila embryo.

Development

136

95

105

45. CallebautIMornonJP

2010

LOTUS, a new domain associated with small RNA pathways in the

germline.

Bioinformatics

26

1140

1144

46. PatilVSKaiT

2010

Repression of Retroelements in Drosophila Germline via piRNA

Pathway by the Tudor Domain Protein Tejas.

Current Biology

20

724

730

47. ArkovALRamosA

Building RNA-protein granules: insight from the

germline.

Trends Cell Biol

20

482

490

48. StrasserMJMackenzieNCDumstreiKNakkrasaeLISteblerJ

2008

Control over the morphology and segregation of Zebrafish germ

cell granules during embryonic development.

Bmc Developmental Biology

8

-

49. AnantharamanVZhangDPAravindL

2010

OST-HTH: a novel predicted RNA-binding domain.

Biology Direct

5

-

50. OlesnickyECDesplanC

2007

Distinct mechanisms for mRNA localization during embryonic axis

specification in the wasp Nasonia.

Developmental Biology

306

134

142

51. LynchJADesplanC

2010

Novel modes of localization and function of nanos in the wasp

Nasonia.

Development

137

3813

3821

52. LynchJABrentAELeafDSPultzMADesplanC

2006

Localized maternal orthodenticle patterns anterior and posterior

in the long germ wasp Nasonia.

Nature

439

728

732

53. JennyAHachetOZavorszkyPCyrklaffAWestonMDJ

2006

A translation-independent role of oskar RNA in early Drosophila

oogenesis.

Development

133

2827

2833

54. GavisERLehmannR

1994

Translational regulation of nanos by RNA

localization.

Nature

369

315

318

55. HayBJanLYJanYN

1990

Localization of Vasa, a Component of Drosophila Polar Granules,

in Maternal-Effect Mutants That Alter Embryonic Anteroposterior

Polarity.

Development

109

425

433

56. Kim-HaJKerrKMacdonaldPM

1995

Translational Regulation of Oskar Messenger-Rna by Bruno, an

Ovarian Rna-Binding Protein, Is Essential.

Cell

81

403

412

57. HuynhJRMunroTPSmith-LitiereKLepesantJAJohnstonDS

2004

The Drosophila hnRNPA/B homolog, Hrp48, is specifically required

for a distinct step in osk mRNA localization.

Developmental Cell

6

625

635

58. YanoTLopez de QuintoSMatsuiYShevchenkoAShevchenkoA

2004

Hrp48, a Drosophila hnRNPA/B homolog, binds and regulates

translation of oskar mRNA.

Developmental Cell

6

637

648

59. DowtonMAustinAD

1994

Molecular Phylogeny of the Insect Order Hymenoptera - Apocritan

Relationships.

Proceedings of the National Academy of Sciences of the United States of

America

91

9911

9915

60. BüningJ

1994

The insect ovary

London

Chapman & Hall

61. AchteligMKrauseG

1971

Experiments on Uncleared Egg of Pimpla-Turionellae L.

(Hymenoptera) for Functional Analysis of Oosome Region.

Wilhelm Roux Archiv Fur Entwicklungsmechanik Der Organismen

167

164

&

62. HotoppJCDClarkMEOliveiraDCSGFosterJMFischerP

2007

Widespread lateral gene transfer from intracellular bacteria to

multicellular eukaryotes.

Science

317

1753

1756

63. KochA

1931

Die Symbiose von Oryzaephilus surinamensis L.

(Cucujidae, Coleoptera).

Zoomorphology

23

389

424

64. SanderK

1969

Specification of the basic body pattern in insect embryogenesis.

Advances in Insect Physiology,

TreherneJEBerridgeMJWigglesworthVB

12

Academic Press

125

235

65. BontemsFSteinAMarlowFLyauteyJGuptaT

2009

Bucky Ball Organizes Germ Plasm Assembly in

Zebrafish.

Current Biology

19

414

422

66. LallSLudwigMZPatelNH

2003

Nanos plays a conserved role in axial patterning outside of the

Diptera.

Curr Biol

13

224

229

67. HemingBS

1979

Origin and Fate of Germ-Cells in Male and Female Embryos of

Haplothrips-Verbasci (Osborn) (Insecta, Thysanoptera,

Phlaeothripidae).

Journal of Morphology

160

323

&

68. JohannsenOAButtFH

1941

Embryology of Insects and Myriapods

New York

McGraw-Hill

69. DuanJLiRQChengDJFanWZhaXF

2010

SilkDB v2.0: a platform for silkworm (Bombyx mori) genome

biology.

Nucleic Acids Research

38

D453

D456

70. KimHSMurphyTXiaJCarageaDParkY

2010

BeetleBase in 2010: revisions to provide comprehensive genomic

information for Tribolium castaneum.

Nucleic Acids Research

38

D437

D442

71. Munoz-TorresMReeseJCPCAKBJPS

2010

Hymenoptera Genome Database: integrated community resources for

insect species of the order Hymenoptera.

Nucleic Acids Research

72. LynchJAPeelADDrechslerAAverofMRothS

2010

EGF Signaling and the Origin of Axial Polarity among the

Insects.

Current Biology

20

1042

1047

73. Hanyu-NakamuraKKobayashiSNakamuraA

2004

Germ cell-autonomous Wunen2 is required for germline development

in Drosophila embryos.

Development

131

4545

4553

74. KhilaAAbouheifE

2009

In situ hybridization on ant ovaries and embryos.

Cold Spring Harb Protoc

2009

pdb prot5250

75. WheelerWCWhitingMWheelerQDCarpenterJM

2001

The phylogeny of the extant hexapod orders.

Cladistics

17

113

169

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#