#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

, , and Are Required to Activate or Delimit the Spread of the Transcriptional Response to Epidermal Wounds in


The epidermis is the largest organ of the body for most animals, and the first line of defense against invading pathogens. A breach in the epidermal cell layer triggers a variety of localized responses that in favorable circumstances result in the repair of the wound. Many cellular and genetic responses must be limited to epidermal cells that are close to wounds, but how this is regulated is still poorly understood. The order and hierarchy of epidermal wound signaling factors are also still obscure. The Drosophila embryonic epidermis provides an excellent system to study genes that regulate wound healing processes. We have developed a variety of fluorescent reporters that provide a visible readout of wound-dependent transcriptional activation near epidermal wound sites. A large screen for mutants that alter the activity of these wound reporters has identified seven new genes required to activate or delimit wound-induced transcriptional responses to a narrow zone of cells surrounding wound sites. Among the genes required to delimit the spread of wound responses are Drosophila Flotillin-2 and Src42A, both of which are transcriptionally activated around wound sites. Flotillin-2 and constitutively active Src42A are also sufficient, when overexpressed at high levels, to inhibit wound-induced transcription in epidermal cells. One gene required to activate epidermal wound reporters encodes Dual oxidase, an enzyme that produces hydrogen peroxide. We also find that four biochemical treatments (a serine protease, a Src kinase inhibitor, methyl-ß-cyclodextrin, and hydrogen peroxide) are sufficient to globally activate epidermal wound response genes in Drosophila embryos. We explore the epistatic relationships among the factors that induce or delimit the spread of epidermal wound signals. Our results define new genetic functions that interact to instruct only a limited number of cells around puncture wounds to mount a transcriptional response, mediating local repair and regeneration.


Vyšlo v časopise: , , and Are Required to Activate or Delimit the Spread of the Transcriptional Response to Epidermal Wounds in. PLoS Genet 7(12): e32767. doi:10.1371/journal.pgen.1002424
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002424

Souhrn

The epidermis is the largest organ of the body for most animals, and the first line of defense against invading pathogens. A breach in the epidermal cell layer triggers a variety of localized responses that in favorable circumstances result in the repair of the wound. Many cellular and genetic responses must be limited to epidermal cells that are close to wounds, but how this is regulated is still poorly understood. The order and hierarchy of epidermal wound signaling factors are also still obscure. The Drosophila embryonic epidermis provides an excellent system to study genes that regulate wound healing processes. We have developed a variety of fluorescent reporters that provide a visible readout of wound-dependent transcriptional activation near epidermal wound sites. A large screen for mutants that alter the activity of these wound reporters has identified seven new genes required to activate or delimit wound-induced transcriptional responses to a narrow zone of cells surrounding wound sites. Among the genes required to delimit the spread of wound responses are Drosophila Flotillin-2 and Src42A, both of which are transcriptionally activated around wound sites. Flotillin-2 and constitutively active Src42A are also sufficient, when overexpressed at high levels, to inhibit wound-induced transcription in epidermal cells. One gene required to activate epidermal wound reporters encodes Dual oxidase, an enzyme that produces hydrogen peroxide. We also find that four biochemical treatments (a serine protease, a Src kinase inhibitor, methyl-ß-cyclodextrin, and hydrogen peroxide) are sufficient to globally activate epidermal wound response genes in Drosophila embryos. We explore the epistatic relationships among the factors that induce or delimit the spread of epidermal wound signals. Our results define new genetic functions that interact to instruct only a limited number of cells around puncture wounds to mount a transcriptional response, mediating local repair and regeneration.


Zdroje

1. SegreJ 2003 Complex redundancy to build a simple epidermal permeability barrier. Curr Opin Cell Biol 15 776 782

2. LockeM 2001 The Wigglesworth Lecture: Insects for studying fundamental problems in biology. J Insect Physiol 47 495 507

3. MoussianB 2010 Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem Mol Biol 40 363 375

4. MartinPParkhurstSM 2004 Parallels between tissue repair and embryo morphogenesis. Development 131 3021 3034

5. MaceKAPearsonJCMcGinnisW 2005 An epidermal barrier wound repair pathway in Drosophila is mediated by grainy head. Science 308 381 385

6. TingSBCaddyJHislopNWilanowskiTAudenA 2005 A homolog of Drosophila grainy head is essential for epidermal integrity in mice. Science 308 411 413

7. CamposIGeigerJASantosACCarlosVJacintoA 2010 Genetic Screen in Drosophila melanogaster Uncovers a Novel Set of Genes Required for Embryonic Epithelial Repair. Genetics 184 129 140

8. GurtnerGCWernerSBarrandonYLongakerMT 2008 Wound repair and regeneration. Nature 453 314 321

9. LemaitreBHoffmannJ 2007 The host defense of Drosophila melanogaster. Annu Rev Immunol 25 697 743

10. JacintoAWoodWBalayoTTurmaineMMartinez-AriasA 2000 Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Curr Biol 10 1420 1426

11. JacintoAWoodWWoolnerSHileyCTurnerL 2002 Dynamic analysis of actin cable function during Drosophila dorsal closure. Curr Biol 12 1245 1250

12. WoodWJacintoAGroseRWoolnerSGaleJ 2002 Wound healing recapitulates morphogenesis in Drosophila embryos. Nat Cell Biol 4 907 912

13. SchaferMWernerS 2007 Transcriptional control of wound repair. Annu Rev Cell Dev Biol 23 69 92

14. BraySJKafatosFC 1991 Developmental function of Elf-1: an essential transcription factor during embryogenesis in Drosophila. Genes Dev 5 1672 1683

15. YuZLinKKBhandariASpencerJAXuX 2006 The Grainyhead-like epithelial transactivator Get-1/Grhl3 regulates epidermal terminal differentiation and interacts functionally with LMO4. Dev Biol 299 122 136

16. ChalmersADLachaniKShinYSherwoodVChoKW 2006 Grainyhead-like 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis. Mech Dev 123 702 718

17. KimMMcGinnisW 2011 Phosphorylation of Grainy head by ERK is essential for wound-dependent regeneration but not for development of an epidermal barrier. Proc Natl Acad Sci U S A 108 650 655

18. AndersenSOHojrupPRoepstorffP 1995 Insect cuticular proteins. Insect Biochem Mol Biol 25 153 176

19. LiGGustafson-BrownCHanksSKNasonKArbeitJM 2003 c-Jun is essential for organization of the epidermal leading edge. Dev Cell 4 865 877

20. WestonCRDavisRJ 2007 The JNK signal transduction pathway. Curr Opin Cell Biol 19 142 149

21. GalkoMJKrasnowMA 2004 Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol 2 e239 doi:10.1371/journal.pbio.0020239

22. LeschCJoJWuYFishGSGalkoMJ 2010 A targeted UAS-RNAi screen in Drosophila larvae identifies wound closure genes regulating distinct cellular processes. Genetics 186 943 957

23. SuYCTreismanJESkolnikEY 1998 The Drosophila Ste20-related kinase misshapen is required for embryonic dorsal closure and acts through a JNK MAPK module on an evolutionarily conserved signaling pathway. Genes Dev 12 2371 2380

24. RametMLanotRZacharyDManfruelliP 2002 JNK signaling pathway is required for efficient wound healing in Drosophila. Dev Biol 241 145 156

25. PearsonJCJuarezMTKimMDrivenesOMcGinnisW 2009 Multiple transcription factor codes activate epidermal wound-response genes in Drosophila. Proc Natl Acad Sci U S A 106 2224 2229

26. BoschMSerrasFMartin-BlancoEBagunaJ 2005 JNK signaling pathway required for wound healing in regenerating Drosophila wing imaginal discs. Dev Biol 280 73 86

27. BergantinosCVilanaXCorominasMSerrasF 2010 Imaginal discs: Renaissance of a model for regenerative biology. Bioessays 32 207 217

28. WangSTsarouhasVXylourgidisNSabriNTiklovaK 2009 The tyrosine kinase Stitcher activates Grainy head and epidermal wound healing in Drosophila. Nat Cell Biol 11 890 895

29. WuYBrockARWangYFujitaniKUedaR 2009 A Blood-Borne PDGF/VEGF-like Ligand Initiates Wound-Induced Epidermal Cell Migration in Drosophila Larvae. Curr Biol 19 1473 1477

30. SchulteTPaschkeKALaessingULottspeichFStuermerCA 1997 Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development 124 577 587

31. BickelPESchererPESchnitzerJEOhPLisantiMP 1997 Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J Biol Chem 272 13793 13802

32. FrickMBrightNARientoKBrayAMerrifiedC 2007 Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol 17 1151 1156

33. RientoKFrickMSchaferINicholsBJ 2009 Endocytosis of flotillin-1 and flotillin-2 is regulated by Fyn kinase. J Cell Sci 122 912 918

34. BabukeTTikkanenR 2007 Dissecting the molecular function of reggie/flotillin proteins. Eur J Cell Biol 86 525 532

35. LanghorstMFReuterAJaegerFAWippichFMLuxenhoferG 2008 Trafficking of the microdomain scaffolding protein reggie-1/flotillin-2. Eur J Cell Biol 87 211 226

36. StuermerCA 2010 The reggie/flotillin connection to growth. Trends Cell Biol

37. ParksALCookKRBelvinMDompeNAFawcettR 2004 Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36 288 292

38. StuermerCA 2011 Reggie/flotillin and the targeted delivery of cargo. J Neurochem 116 708 713

39. GalbiatiFVolonteDGoltzJSSteeleZSenJ 1998 Identification, sequence and developmental expression of invertebrate flotillins from Drosophila melanogaster. Gene 210 229 237

40. HoehneMde CouetHGStuermerCAFischbachKF 2005 Loss- and gain-of-function analysis of the lipid raft proteins Reggie/Flotillin in Drosophila: they are posttranslationally regulated, and misexpression interferes with wing and eye development. Mol Cell Neurosci 30 326 338

41. KatanaevVLSolisGPHausmannGBuestorfSKatanayevaN 2008 Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of Wingless and Hedgehog in Drosophila. Embo J 27 509 521

42. LudwigAOttoGPRientoKHamsEFallonPG 2010 Flotillin microdomains interact with the cortical cytoskeleton to control uropod formation and neutrophil recruitment. J Cell Biol 191 771 781

43. BaroloSCastroBPosakonyJW 2004 New Drosophila transgenic reporters: insulated P-element vectors expressing fast-maturing RFP

44. BrandAHPerrimonN 1993 Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118 401 415

45. SansonBWhitePVincentJP 1996 Uncoupling cadherin-based adhesion from wingless signalling in Drosophila. Nature 383 627 630

46. PhelpsCBBrandAH 1998 Ectopic gene expression in Drosophila using GAL4 system. Methods 14 367 379

47. ChoYSStevensLMSteinD 2010 Pipe-dependent ventral processing of Easter by Snake is the defining step in Drosophila embryo DV axis formation. Curr Biol 20 1133 1137

48. TangHKambrisZLemaitreBHashimotoC 2006 Two proteases defining a melanization cascade in the immune system of Drosophila. J Biol Chem 281 28097 28104

49. Neumann-GiesenCFernowIAmaddiiMTikkanenR 2007 Role of EGF-induced tyrosine phosphorylation of reggie-1/flotillin-2 in cell spreading and signaling to the actin cytoskeleton. J Cell Sci 120 395 406

50. TakahashiFEndoSKojimaTSaigoK 1996 Regulation of cell-cell contacts in developing Drosophila eyes by Dsrc41, a new, close relative of vertebrate c-src. Genes Dev 10 1645 1656

51. ParsonsSJParsonsJT 2004 Src family kinases, key regulators of signal transduction. Oncogene 23 7906 7909

52. TatenoMNishidaYAdachi-YamadaT 2000 Regulation of JNK by Src during Drosophila development. Science 287 324 327

53. BlakeRABroomeMALiuXWuJGishizkyM 2000 SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol 20 9018 9027

54. IlangumaranSHoessliDC 1998 Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J 335 Pt 2 433 440

55. LambertSVind-KezunovicDKarvinenSGniadeckiR 2006 Ligand-independent activation of the EGFR by lipid raft disruption. J Invest Dermatol 126 954 962

56. ZidovetzkiRLevitanI 2007 Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768 1311 1324

57. MathiasJRPerrinBJLiuTXKankiJLookAT 2006 Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukoc Biol 80 1281 1288

58. NiethammerPGrabherCLookATMitchisonTJ 2009 A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459 996 999

59. MoreiraSStramerBEvansIWoodWMartinP 2010 Prioritization of competing damage and developmental signals by migrating macrophages in the Drosophila embryo. Curr Biol 20 464 470

60. StramerBMartinP 2005 Cell biology: master regulators of sealing and healing. Curr Biol 15 R425 427

61. MunderlohCSolisGPBodrikovVJaegerFAWiechersM 2009 Reggies/flotillins regulate retinal axon regeneration in the zebrafish optic nerve and differentiation of hippocampal and N2a neurons. J Neurosci 29 6607 6615

62. GiererAMeinhardtH 1972 A theory of biological pattern formation. Kybernetik 12 30 39

63. WangQUhlirovaMBohmannD 2010 Spatial restriction of FGF signaling by a matrix metalloprotease controls branching morphogenesis. Dev Cell 18 157 164

64. StuermerCALangDMKirschFWiechersMDeiningerSO 2001 Glycosylphosphatidyl inositol-anchored proteins and fyn kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and -2. Mol Biol Cell 12 3031 3045

65. AveryLWassermanS 1992 Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet 8 312 316

66. LuXLiY 1999 Drosophila Src42A is a negative regulator of RTK signaling. Dev Biol 208 233 243

67. GordonMDDionneMSSchneiderDSNusseR 2005 WntD is a feedback inhibitor of Dorsal/NF-kappaB in Drosophila development and immunity. Nature 437 746 749

68. HaEMOhCTBaeYSLeeWJ 2005 A direct role for dual oxidase in Drosophila gut immunity. Science 310 847 850

69. BaeYSChoiMKLeeWJ 2010 Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends Immunol 31 278 287

70. BuchonNPoidevinMKwonHMGuillouASottasV 2009 A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway. Proc Natl Acad Sci U S A 106 12442 12447

71. WesleyUVBovePFHristovaMMcCarthySvan der VlietA 2007 Airway epithelial cell migration and wound repair by ATP-mediated activation of dual oxidase 1. J Biol Chem 282 3213 3220

72. WooHAYimSHShinDHKangDYuDY 2010 Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 140 517 528

73. HancockJF 2006 Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 7 456 462

74. LingwoodDSimonsK 2010 Lipid rafts as a membrane-organizing principle. Science 327 46 50

75. PikeLJ 2005 Growth factor receptors, lipid rafts and caveolae: an evolving story. Biochim Biophys Acta 1746 260 273

76. JansRAtanasovaGJadotMPoumayY 2004 Cholesterol depletion upregulates involucrin expression in epidermal keratinocytes through activation of p38. J Invest Dermatol 123 564 573

77. BehrMWingenCWolfCSchuhRHochM 2007 Wurst is essential for airway clearance and respiratory-tube size control. Nat Cell Biol 9 847 853

78. BachmannADragaMGraweFKnustE 2008 On the role of the MAGUK proteins encoded by Drosophila varicose during embryonic and postembryonic development. BMC Dev Biol 8 55

79. MoyerKEJacobsJR 2008 Varicose: a MAGUK required for the maturation and function of Drosophila septate junctions. BMC Dev Biol 8 99

80. WuVMYuMHPaikRBanerjeeSLiangZ 2007 Drosophila Varicose, a member of a new subgroup of basolateral MAGUKs, is required for septate junctions and tracheal morphogenesis. Development 134 999 1009

81. ForsterDArmbrusterKLuschnigS 2010 Sec24-dependent secretion drives cell-autonomous expansion of tracheal tubes in Drosophila. Curr Biol 20 62 68

82. NorumMTangEChavoshiTSchwarzHLinkeD 2010 Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation. PLoS ONE 5 e10802 doi:10.1371/journal.pone.0010802

83. TsarouhasVSentiKAJayaramSATiklovaKHemphalaJ 2007 Sequential pulses of apical epithelial secretion and endocytosis drive airway maturation in Drosophila. Dev Cell 13 214 225

84. ReddienPWBermangeALMurfittKJJenningsJRSanchez AlvaradoA 2005 Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell 8 635 649

85. GiesenKLammelULangehansDKrukkertKBunseI 2003 Regulation of glial cell number and differentiation by ecdysone and Fos signaling. Mech Dev 120 401 413

86. NiwaRNamikiTItoKShimada-NiwaYKiuchiM 2010 Non-molting glossy/shroud encodes a short-chain dehydrogenase/reductase that functions in the ‘Black Box’ of the ecdysteroid biosynthesis pathway. Development 137 1991 1999

87. WileyHSBurkePM 2001 Regulation of receptor tyrosine kinase signaling by endocytic trafficking. Traffic 2 12 18

88. ScholppSBrandM 2004 Endocytosis controls spreading and effective signaling range of Fgf8 protein. Curr Biol 14 1834 1841

89. CassoDRamirez-WeberFKornbergTB 2000 GFP-tagged balancer chromosomes for Drosophila melanogaster. Mech Dev 91 451 454

90. StapletonMCarlsonJBroksteinPYuCChampeM 2002 A Drosophila full-length cDNA resource. Genome Biol 3 RESEARCH0080

91. StapletonMLiaoGBroksteinPHongLCarninciP 2002 The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes. Genome Res 12 1294 1300

92. KosmanDMizutaniCMLemonsDCoxWGMcGinnisW 2004 Multiplex detection of RNA expression in Drosophila embryos. Science 305 846

93. TweedieSAshburnerMFallsKLeylandPMcQuiltonP 2009 FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Research 37 D555 D559

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#