#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Disease-Associated Mutations That Alter the RNA Structural Ensemble


Genome-wide association studies (GWAS) often identify disease-associated mutations in intergenic and non-coding regions of the genome. Given the high percentage of the human genome that is transcribed, we postulate that for some observed associations the disease phenotype is caused by a structural rearrangement in a regulatory region of the RNA transcript. To identify such mutations, we have performed a genome-wide analysis of all known disease-associated Single Nucleotide Polymorphisms (SNPs) from the Human Gene Mutation Database (HGMD) that map to the untranslated regions (UTRs) of a gene. Rather than using minimum free energy approaches (e.g. mFold), we use a partition function calculation that takes into consideration the ensemble of possible RNA conformations for a given sequence. We identified in the human genome disease-associated SNPs that significantly alter the global conformation of the UTR to which they map. For six disease-states (Hyperferritinemia Cataract Syndrome, β-Thalassemia, Cartilage-Hair Hypoplasia, Retinoblastoma, Chronic Obstructive Pulmonary Disease (COPD), and Hypertension), we identified multiple SNPs in UTRs that alter the mRNA structural ensemble of the associated genes. Using a Boltzmann sampling procedure for sub-optimal RNA structures, we are able to characterize and visualize the nature of the conformational changes induced by the disease-associated mutations in the structural ensemble. We observe in several cases (specifically the 5′ UTRs of FTL and RB1) SNP–induced conformational changes analogous to those observed in bacterial regulatory Riboswitches when specific ligands bind. We propose that the UTR and SNP combinations we identify constitute a “RiboSNitch,” that is a regulatory RNA in which a specific SNP has a structural consequence that results in a disease phenotype. Our SNPfold algorithm can help identify RiboSNitches by leveraging GWAS data and an analysis of the mRNA structural ensemble.


Vyšlo v časopise: Disease-Associated Mutations That Alter the RNA Structural Ensemble. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001074
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001074

Souhrn

Genome-wide association studies (GWAS) often identify disease-associated mutations in intergenic and non-coding regions of the genome. Given the high percentage of the human genome that is transcribed, we postulate that for some observed associations the disease phenotype is caused by a structural rearrangement in a regulatory region of the RNA transcript. To identify such mutations, we have performed a genome-wide analysis of all known disease-associated Single Nucleotide Polymorphisms (SNPs) from the Human Gene Mutation Database (HGMD) that map to the untranslated regions (UTRs) of a gene. Rather than using minimum free energy approaches (e.g. mFold), we use a partition function calculation that takes into consideration the ensemble of possible RNA conformations for a given sequence. We identified in the human genome disease-associated SNPs that significantly alter the global conformation of the UTR to which they map. For six disease-states (Hyperferritinemia Cataract Syndrome, β-Thalassemia, Cartilage-Hair Hypoplasia, Retinoblastoma, Chronic Obstructive Pulmonary Disease (COPD), and Hypertension), we identified multiple SNPs in UTRs that alter the mRNA structural ensemble of the associated genes. Using a Boltzmann sampling procedure for sub-optimal RNA structures, we are able to characterize and visualize the nature of the conformational changes induced by the disease-associated mutations in the structural ensemble. We observe in several cases (specifically the 5′ UTRs of FTL and RB1) SNP–induced conformational changes analogous to those observed in bacterial regulatory Riboswitches when specific ligands bind. We propose that the UTR and SNP combinations we identify constitute a “RiboSNitch,” that is a regulatory RNA in which a specific SNP has a structural consequence that results in a disease phenotype. Our SNPfold algorithm can help identify RiboSNitches by leveraging GWAS data and an analysis of the mRNA structural ensemble.


Zdroje

1. MortonNE

2008 Into the post-HapMap era. Adv Genet 60 727 742

2. MathewCG

2008 New links to the pathogenesis of Crohn disease provided by genome-wide association scans. Nat Rev Genet 9 9 14

3. LeeSH

van der WerfJH

HayesBJ

GoddardME

VisscherPM

2008 Predicting unobserved phenotypes for complex traits from whole-genome SNP data. PLoS Genet 4 e1000231 doi:10.1371/journal.pgen.1000231

4. BenjaminEJ

DupuisJ

LarsonMG

LunettaKL

BoothSL

2007 Genome-wide association with select biomarker traits in the Framingham Heart Study. BMC Med Genet 8 Suppl 1 S11

5. LeeST

ChoiKW

YeoHT

KimJW

KiCS

2008 Identification of an Arg35X mutation in the PDCD10 gene in a patient with cerebral and multiple spinal cavernous malformations. J Neurol Sci 267 177 181

6. WangJ

PitarqueM

Ingelman-SundbergM

2006 3′-UTR polymorphism in the human CYP2A6 gene affects mRNA stability and enzyme expression. Biochem Biophys Res Commun 340 491 497

7. WangD

JohnsonAD

PappAC

KroetzDL

SadeeW

2005 Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics 15 693 704

8. Kimchi-SarfatyC

OhJM

KimIW

SaunaZE

CalcagnoAM

2007 A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315 525 528

9. GommansWM

TataliasNE

SieCP

DupuisD

VendettiN

2008 Screening of human SNP database identifies recoding sites of A-to-I RNA editing. Rna 14 2074 2085

10. GlinskyGV

2008 SNP-guided microRNA maps (MirMaps) of 16 common human disorders identify a clinically accessible therapy reversing transcriptional aberrations of nuclear import and inflammasome pathways. Cell Cycle 7 3564 3576

11. GlinskyGV

2008 Disease phenocode analysis identifies SNP-guided microRNA maps (MirMaps) associated with human “master” disease genes. Cell Cycle 7 3680 3694

12. NuinoonM

MakarasaraW

MushirodaT

SetianingsihI

WahidiyatPA

2009 A genome-wide association identified the common genetic variants influence disease severity in beta(0)-thalassemia/hemoglobin E. Hum Genet

13. GlinskiiAB

MaJ

MaS

GrantD

LimCU

2009 Identification of intergenic trans-regulatory RNAs containing a disease-linked SNP sequence and targeting cell cycle progression/differentiation pathways in multiple common human disorders. Cell Cycle 8 3925 3942

14. TreutleinJ

CichonS

RidingerM

WodarzN

SoykaM

2009 Genome-wide association study of alcohol dependence. Arch Gen Psychiatry 66 773 784

15. LaederachA

2007 Informatics challenges in structured RNA. Brief Bioinform 8 294 303

16. WangJX

LeeER

MoralesDR

LimJ

BreakerRR

2008 Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell 29 691 702

17. RanaTM

2007 Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8 23 36

18. LeinES

HawrylyczMJ

AoN

AyresM

BensingerA

2007 Genome-wide atlas of gene expression in the adult mouse brain. Nature 445 168 176

19. DohertyEA

DoudnaJA

2000 Ribozyme structures and mechanisms. Annu Rev Biochem 69 597 615

20. TuckerBJ

BreakerRR

2005 Riboswitches as versatile gene control elements. Curr Opin Struct Biol 15 342 348

21. NollerHF

2005 RNA structure: reading the ribosome. Science 309 1508 1514

22. WaldispuhlJ

CloteP

2007 Computing the partition function and sampling for saturated secondary structures of RNA, with respect to the Turner energy model. J Comput Biol 14 190 215

23. MathewsDH

2004 Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. Rna 10 1178 1190

24. BernhartSH

TaferH

MucksteinU

FlammC

StadlerPF

2006 Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 1 3

25. ReederJ

HochsmannM

RehmsmeierM

VossB

GiegerichR

2006 Beyond Mfold: recent advances in RNA bioinformatics. J Biotechnol 124 41 55

26. BurdonKP

SharmaS

ChenCS

DimasiDP

MackeyDA

2007 A novel deletion in the FTL gene causes hereditary hyperferritinemia cataract syndrome (HHCS) by alteration of the transcription start site. Hum Mutat 28 742

27. JankovicL

EfremovGD

PetkovG

KattamisC

GeorgeE

1990 Two novel polyadenylation mutations leading to beta(+)-thalassemia. Br J Haematol 75 122 126

28. HoPJ

RochetteJ

FisherCA

WonkeB

JarvisMK

1996 Moderate reduction of beta-globin gene transcript by a novel mutation in the 5′ untranslated region: a study of its interaction with other genotypes in two families. Blood 87 1170 1178

29. CastaldiPJ

ChoMH

CohnM

LangermanF

MoranS

2009 The COPD Genetic Association Compendium: A Comprehensive Online Database of COPD Genetic Associations. Hum Mol Genet

30. EzzikouriS

El FeydiAE

El KihalL

AfifiR

BenazzouzM

2008 Prevalence of common HFE and SERPINA1 mutations in patients with hepatocellular carcinoma in a Moroccan population. Arch Med Res 39 236 241

31. HoPJ

HallGW

WattS

WestNC

WimperisJW

1998 Unusually severe heterozygous beta-thalassemia: evidence for an interacting gene affecting globin translation. Blood 92 3428 3435

32. HoPJ

HallGW

LuoLY

WeatherallDJ

TheinSL

1998 Phenotypic prediction in beta-thalassemia. Ann N Y Acad Sci 850 436 441

33. SgourouA

RoutledgeS

AntoniouM

PapachatzopoulouA

PsiouriL

2004 Thalassaemia mutations within the 5′UTR of the human beta-globin gene disrupt transcription. Br J Haematol 124 828 835

34. ChappellS

DalyL

MorganK

Guetta BaranesT

RocaJ

2006 Cryptic haplotypes of SERPINA1 confer susceptibility to chronic obstructive pulmonary disease. Hum Mutat 27 103 109

35. StensonPD

BallEV

MortM

PhillipsAD

ShielJA

2003 Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21 577 581

36. GeorgeRA

SmithTD

CallaghanS

HardmanL

PieridesC

2008 General mutation databases: analysis and review. J Med Genet 45 65 70

37. KarolchikD

KuhnRM

BaertschR

BarberGP

ClawsonH

2008 The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res 36 D773 779

38. ElnitskiLL

ShahP

MorelandRT

UmayamL

WolfsbergTG

2007 The ENCODEdb portal: simplified access to ENCODE Consortium data. Genome Res 17 954 959

39. SanchezM

GalyB

DandekarT

BengertP

VainshteinY

2006 Iron regulation and the cell cycle: identification of an iron-responsive element in the 3′-untranslated region of human cell division cycle 14A mRNA by a refined microarray-based screening strategy. J Biol Chem 281 22865 22874

40. DingY

ChanCY

LawrenceCE

2005 RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. Rna 11 1157 1166

41. DingY

ChanCY

LawrenceCE

2004 Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32 W135 141

42. WoodsonSA

2000 Recent insights on RNA folding mechanisms from catalytic RNA. Cell Mol Life Sci 57 796 808

43. QuarrierS

MartinJS

Davis-NeulanderL

BeauregardA

LaederachA

Evaluation of the information content of RNA structure mapping data for secondary structure prediction. RNA 16 1108 1117

44. de BruijneEL

GilsA

GuimaraesAH

DippelDW

DeckersJW

2009 The role of thrombin activatable fibrinolysis inhibitor in arterial thrombosis at a young age: the ATTAC study. J Thromb Haemost 7 919 927

45. BoffaMB

MaretD

HamillJD

BastajianN

CrainichP

2008 Effect of single nucleotide polymorphisms on expression of the gene encoding thrombin-activatable fibrinolysis inhibitor: a functional analysis. Blood 111 183 189

46. BaroniTE

ChitturSV

GeorgeAD

TenenbaumSA

2008 Advances in RIP-chip analysis : RNA-binding protein immunoprecipitation-microarray profiling. Methods Mol Biol 419 93 108

47. StrangerBE

NicaAC

ForrestMS

DimasA

BirdCP

2007 Population genomics of human gene expression. Nat Genet 39 1217 1224

48. KozakM

2003 Alternative ways to think about mRNA sequences and proteins that appear to promote internal initiation of translation. Gene 318 1 23

49. ChildSJ

MillerMK

GeballeAP

1999 Translational control by an upstream open reading frame in the HER-2/neu transcript. J Biol Chem 274 24335 24341

50. JousseC

BruhatA

CarraroV

UranoF

FerraraM

2001 Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the chop 5′UTR. Nucleic Acids Res 29 4341 4351

51. BeaudoingE

FreierS

WyattJR

ClaverieJM

GautheretD

2000 Patterns of variant polyadenylation signal usage in human genes. Genome Res 10 1001 1010

52. IadevaiaV

CaldarolaS

TinoE

AmaldiF

LoreniF

2008 All translation elongation factors and the e, f, and h subunits of translation initiation factor 3 are encoded by 5′-terminal oligopyrimidine (TOP) mRNAs. Rna 14 1730 1736

53. CharlesworthA

WilczynskaA

ThampiP

CoxLL

MacNicolAM

2006 Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation. Embo J 25 2792 2801

54. LaiEC

BurksC

PosakonyJW

1998 The K box, a conserved 3′ UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. Development 125 4077 4088

55. LaiEC

TamB

RubinGM

2005 Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 19 1067 1080

56. LeebeekFW

GoorMP

GuimaraesAH

BrouwersGJ

MaatMP

2005 High functional levels of thrombin-activatable fibrinolysis inhibitor are associated with an increased risk of first ischemic stroke. J Thromb Haemost 3 2211 2218

57. BindewaldE

ShapiroBA

2006 RNA secondary structure prediction from sequence alignments using a network of k-nearest neighbor classifiers. Rna 12 342 352

58. HofackerIL

StadlerPF

2006 Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics 22 1172 1176

59. DartyK

DeniseA

PontyY

2009 VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25 1974 1975

60. PesoleG

LiuniS

GrilloG

IppedicoM

LarizzaA

1999 UTRdb: a specialized database of 5′ and 3′ untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 27 188 191

61. PesoleG

LiuniS

1999 Internet resources for the functional analysis of 5′ and 3′ untranslated regions of eukaryotic mRNAs. Trends Genet 15 378

62. HuangHY

ChienCH

JenKH

HuangHD

2006 RegRNA: an integrated web server for identifying regulatory RNA motifs and elements. Nucleic Acids Res 34 W429 434

63. 2003 The International HapMap Project. Nature 426 789 796

64. DimasAS

DeutschS

StrangerBE

MontgomerySB

BorelC

2009 Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325 1246 1250

65. CowellJK

BiaB

AkoulitchevA

1996 A novel mutation in the promotor region in a family with a mild form of retinoblastoma indicates the location of a new regulatory domain for the RB1 gene. Oncogene 12 431 436

66. MaciasM

DeanM

AtkinsonA

Jimenez-MoralesS

Garcia-VazquezFJ

2008 Spectrum of RB1 gene mutations and loss of heterozygosity in Mexican patients with retinoblastoma: identification of six novel mutations. Cancer Biomark 4 93 99

67. CremonesiL

FumagalliA

SorianiN

FerrariM

LeviS

2001 Double-gradient denaturing gradient gel electrophoresis assay for identification of L-ferritin iron-responsive element mutations responsible for hereditary hyperferritinemia-cataract syndrome: identification of the new mutation C14G. Clin Chem 47 491 497

68. FerrariF

FoglieniB

ArosioP

CamaschellaC

DaraioF

2006 Microelectronic DNA chip for hereditary hyperferritinemia cataract syndrome, a model for large-scale analysis of disorders of iron metabolism. Hum Mutat 27 201 208

69. CremonesiL

ParoniR

FoglieniB

GalbiatiS

FermoI

2003 Scanning mutations of the 5′UTR regulatory sequence of L-ferritin by denaturing high-performance liquid chromatography: identification of new mutations. Br J Haematol 121 173 179

70. BonafeL

DermitzakisET

UngerS

GreenbergCR

Campos-XavierBA

2005 Evolutionary comparison provides evidence for pathogenicity of RMRP mutations. PLoS Genet 1 e47 doi:10.1371/journal.pgen.0010047

71. HoPJ

HallGW

LuoLY

WeatherallDJ

TheinSL

1998 Beta-thalassaemia intermedia: is it possible consistently to predict phenotype from genotype? Br J Haematol 100 70 78

72. WayeJS

EngB

PattersonM

ReisMD

MacdonaldD

2001 Novel beta-thalassemia mutation in a beta-thalassemia intermedia patient. Hemoglobin 25 103 105

73. KazazianHHJr

BoehmCD

1988 Molecular basis and prenatal diagnosis of beta-thalassemia. Blood 72 1107 1116

74. MorgadoA

PicancoI

GomesS

MirandaA

CouceloM

2007 Mutational spectrum of delta-globin gene in the Portuguese population. Eur J Haematol 79 422 428

75. InoueI

NakajimaT

WilliamsCS

QuackenbushJ

PuryearR

1997 A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 99 1786 1797

76. IshigamiT

UmemuraS

TamuraK

HibiK

NyuiN

1997 Essential hypertension and 5′ upstream core promoter region of human angiotensinogen gene. Hypertension 30 1325 1330

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#