#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

An Alpha-Catulin Homologue Controls Neuromuscular Function through Localization of the Dystrophin Complex and BK Channels in


The large conductance, voltage- and calcium-dependent potassium (BK) channel serves as a major negative feedback regulator of calcium-mediated physiological processes and has been implicated in muscle dysfunction and neurological disorders. In addition to membrane depolarization, activation of the BK channel requires a rise in cytosolic calcium. Localization of the BK channel near calcium channels is therefore critical for its function. In a genetic screen designed to isolate novel regulators of the Caenorhabditis elegans BK channel, SLO-1, we identified ctn-1, which encodes an α-catulin homologue with homology to the cytoskeletal proteins α-catenin and vinculin. ctn-1 mutants resemble slo-1 loss-of-function mutants, as well as mutants with a compromised dystrophin complex. We determined that CTN-1 uses two distinct mechanisms to localize SLO-1 in muscles and neurons. In muscles, CTN-1 utilizes the dystrophin complex to localize SLO-1 channels near L-type calcium channels. In neurons, CTN-1 is involved in localizing SLO-1 to a specific domain independent of the dystrophin complex. Our results demonstrate that CTN-1 ensures the localization of SLO-1 within calcium nanodomains, thereby playing a crucial role in muscles and neurons.


Vyšlo v časopise: An Alpha-Catulin Homologue Controls Neuromuscular Function through Localization of the Dystrophin Complex and BK Channels in. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001077
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001077

Souhrn

The large conductance, voltage- and calcium-dependent potassium (BK) channel serves as a major negative feedback regulator of calcium-mediated physiological processes and has been implicated in muscle dysfunction and neurological disorders. In addition to membrane depolarization, activation of the BK channel requires a rise in cytosolic calcium. Localization of the BK channel near calcium channels is therefore critical for its function. In a genetic screen designed to isolate novel regulators of the Caenorhabditis elegans BK channel, SLO-1, we identified ctn-1, which encodes an α-catulin homologue with homology to the cytoskeletal proteins α-catenin and vinculin. ctn-1 mutants resemble slo-1 loss-of-function mutants, as well as mutants with a compromised dystrophin complex. We determined that CTN-1 uses two distinct mechanisms to localize SLO-1 in muscles and neurons. In muscles, CTN-1 utilizes the dystrophin complex to localize SLO-1 channels near L-type calcium channels. In neurons, CTN-1 is involved in localizing SLO-1 to a specific domain independent of the dystrophin complex. Our results demonstrate that CTN-1 ensures the localization of SLO-1 within calcium nanodomains, thereby playing a crucial role in muscles and neurons.


Zdroje

1. LaiHC

JanLY

2006 The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci 7 548 562

2. LevitanIB

2006 Signaling protein complexes associated with neuronal ion channels. Nat Neurosci 9 305 310

3. SalkoffL

ButlerA

FerreiraG

SantiC

WeiA

2006 High-conductance potassium channels of the SLO family. Nat Rev Neurosci 7 921 931

4. FaklerB

AdelmanJP

2008 Control of K(Ca) channels by calcium nano/microdomains. Neuron 59 873 881

5. BrennerR

PerezGJ

BonevAD

EckmanDM

KosekJC

2000 Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 407 870 876

6. LovellPV

McCobbDP

2001 Pituitary control of BK potassium channel function and intrinsic firing properties of adrenal chromaffin cells. J Neurosci 21 3429 3442

7. WernerME

ZvaraP

MeredithAL

AldrichRW

NelsonMT

2005 Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel. J Physiol 567 545 556

8. DuW

BautistaJF

YangH

Diez-SampedroA

YouSA

2005 Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37 733 738

9. ShrutiS

ClemRL

BarthAL

2008 A seizure-induced gain-of-function in BK channels is associated with elevated firing activity in neocortical pyramidal neurons. Neurobiol Dis 30 323 330

10. SchopperleWM

HolmqvistMH

ZhouY

WangJ

WangZ

1998 Slob, a novel protein that interacts with the Slowpoke calcium-dependent potassium channel. Neuron 20 565 573

11. LuR

AliouaA

KumarY

EghbaliM

StefaniE

2006 MaxiK channel partners: physiological impact. J Physiol 570 65 72

12. TianL

ChenL

McClaffertyH

SailerCA

RuthP

2006 A noncanonical SH3 domain binding motif links BK channels to the actin cytoskeleton via the SH3 adapter cortactin. FASEB J 20 2588 2590

13. KimEY

RidgwayLD

DryerSE

2007 Interactions with filamin A stimulate surface expression of large-conductance Ca2+-activated K+ channels in the absence of direct actin binding. Mol Pharmacol 72 622 630

14. ParkSM

LiuG

KubalA

FuryM

CaoL

2004 Direct interaction between BKCa potassium channel and microtubule-associated protein 1A. FEBS Lett 570 143 148

15. WangZW

SaifeeO

NonetML

SalkoffL

2001 SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron 32 867 881

16. DaviesAG

Pierce-ShimomuraJT

KimH

VanHovenMK

ThieleTR

2003 A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115 655 666

17. Carre-PierratM

GrisoniK

GieselerK

MariolMC

MartinE

2006 The SLO-1 BK channel of Caenorhabditis elegans is critical for muscle function and is involved in dystrophin-dependent muscle dystrophy. J Mol Biol 358 387 395

18. KimH

RogersMJ

RichmondJE

McIntireSL

2004 SNF-6 is an acetylcholine transporter interacting with the dystrophin complex in Caenorhabditis elegans. Nature 430 891 896

19. BessouC

GiugiaJB

FranksCJ

Holden-DyeL

SegalatL

1998 Mutations in the Caenorhabditis elegans dystrophin-like gene dys-1 lead to hyperactivity and suggest a link with cholinergic transmission. Neurogenetics 2 61 72

20. GieselerK

BessouC

SegalatL

1999 Dystrobrevin- and dystrophin-like mutants display similar phenotypes in the nematode Caenorhabditis elegans. Neurogenetics 2 87 90

21. KimH

Pierce-ShimomuraJT

OhHJ

JohnsonBE

GoodmanMB

2009 The dystrophin complex controls bk channel localization and muscle activity in Caenorhabditis elegans. PLoS Genet 5 e1000780 doi:10.1371/journal.pgen.1000780

22. AldertonJM

SteinhardtRA

2000 Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. J Biol Chem 275 9452 9460

23. JanssensB

StaesK

van RoyF

1999 Human alpha-catulin, a novel alpha-catenin-like molecule with conserved genomic structure, but deviating alternative splicing. Biochim Biophys Acta 1447 341 347

24. BarsteadRJ

WaterstonRH

1989 The basal component of the nematode dense-body is vinculin. J Biol Chem 264 10177 10185

25. CostaM

RaichW

AgbunagC

LeungB

HardinJ

1998 A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J Cell Biol 141 297 308

26. WiesnerC

WinsauerG

ReschU

HoethM

SchmidJA

2008 Alpha-catulin, a Rho signalling component, can regulate NF-kappaB through binding to IKK-beta, and confers resistance to apoptosis. Oncogene 27 2159 2169

27. Sadoulet-PuccioHM

RajalaM

KunkelLM

1997 Dystrobrevin and dystrophin: an interaction through coiled-coil motifs. Proc Natl Acad Sci U S A 94 12413 12418

28. HuH

ShaoLR

ChavoshyS

GuN

TriebM

2001 Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci 21 9585 9597

29. SailerCA

KaufmannWA

KoglerM

ChenL

SausbierU

2006 Immunolocalization of BK channels in hippocampal pyramidal neurons. Eur J Neurosci 24 442 454

30. KaufmannWA

FerragutiF

FukazawaY

KasugaiY

ShigemotoR

2009 Large-conductance calcium-activated potassium channels in purkinje cell plasma membranes are clustered at sites of hypolemmal microdomains. J Comp Neurol 515 215 230

31. LiewaldJF

BraunerM

StephensGJ

BouhoursM

SchultheisC

2008 Optogenetic analysis of synaptic function. Nat Methods 5 895 902

32. GieselerK

MariolMC

BessouC

MigaudM

FranksCJ

2001 Molecular, genetic and physiological characterisation of dystrobrevin-like (dyb-1) mutants of Caenorhabditis elegans. J Mol Biol 307 107 117

33. EdgertonJR

ReinhartPH

2003 Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J Physiol 548 53 69

34. PrakriyaM

LingleCJ

1999 BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells. J Neurophysiol 81 2267 2278

35. GrachevaEO

HadwigerG

NonetML

RichmondJE

2008 Direct interactions between C. elegans RAB-3 and Rim provide a mechanism to target vesicles to the presynaptic density. Neurosci Lett 444 137 142

36. SahekiY

BargmannCI

2009 Presynaptic CaV2 calcium channel traffic requires CALF-1 and the alpha(2)delta subunit UNC-36. Nat Neurosci 12 1257 1265

37. BiggarWD

KlamutHJ

DemacioPC

StevensDJ

RayPN

2002 Duchenne muscular dystrophy: current knowledge, treatment, and future prospects. Clin Orthop Relat Res 88 106

38. BoisPR

BorgonRA

VonrheinC

IzardT

2005 Structural dynamics of alpha-actinin-vinculin interactions. Mol Cell Biol 25 6112 6122

39. ZieglerWH

LiddingtonRC

CritchleyDR

2006 The structure and regulation of vinculin. Trends Cell Biol 16 453 460

40. ErvastiJM

2003 Costameres: the Achilles' heel of Herculean muscle. J Biol Chem 278 13591 13594

41. AyalonG

DavisJQ

ScotlandPB

BennettV

2008 An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 135 1189 1200

42. TroemelER

SagastiA

BargmannCI

1999 Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell 99 387 398

43. BrennerS

1974 The genetics of Caenorhabditis elegans. Genetics 77 71 94

44. WicksSR

YehRT

GishWR

WaterstonRH

PlasterkRH

2001 Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28 160 164

45. ShioiG

ShojiM

NakamuraM

IshiharaT

KatsuraI

2001 Mutations affecting nerve attachment of Caenorhabditis elegans. Genetics 157 1611 1622

46. MelloCC

KramerJM

StinchcombD

AmbrosV

1991 Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. Embo J 10 3959 3970

47. Pierce-ShimomuraJT

ChenBL

MunJJ

HoR

SarkisR

2008 Genetic analysis of crawling and swimming locomotory patterns in C. elegans. Proc Natl Acad Sci U S A 105 20982 20987

48. RichmondJE

2006 Electrophysiological recordings from the neuromuscular junction of C. elegans. WormBook 1 8

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#