#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetic Analysis of Baker's Yeast Msh4-Msh5 Reveals a Threshold Crossover Level for Meiotic Viability


During meiosis, the Msh4-Msh5 complex is thought to stabilize single-end invasion intermediates that form during early stages of recombination and subsequently bind to Holliday junctions to facilitate crossover formation. To analyze Msh4-Msh5 function, we mutagenized 57 residues in Saccharomyces cerevisiae Msh4 and Msh5 that are either conserved across all Msh4/5 family members or are specific to Msh4 and Msh5. The Msh5 subunit appeared more sensitive to mutagenesis. We identified msh4 and msh5 threshold (msh4/5-t) mutants that showed wild-type spore viability and crossover interference but displayed, compared to wild-type, up to a two-fold decrease in crossing over on large and medium sized chromosomes (XV, VII, VIII). Crossing over on a small chromosome, however, approached wild-type levels. The msh4/5-t mutants also displayed synaptonemal complex assembly defects. A triple mutant containing a msh4/5-t allele and mutations that decreased meiotic double-strand break levels (spo11-HA) and crossover interference (pch2Δ) showed synergistic defects in spore viability. Together these results indicate that the baker's yeast meiotic cell does not require the ∼90 crossovers maintained by crossover homeostasis to form viable spores. They also show that Pch2-mediated crossover interference is important to maintain meiotic viability when crossovers become limiting.


Vyšlo v časopise: Genetic Analysis of Baker's Yeast Msh4-Msh5 Reveals a Threshold Crossover Level for Meiotic Viability. PLoS Genet 6(8): e32767. doi:10.1371/journal.pgen.1001083
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001083

Souhrn

During meiosis, the Msh4-Msh5 complex is thought to stabilize single-end invasion intermediates that form during early stages of recombination and subsequently bind to Holliday junctions to facilitate crossover formation. To analyze Msh4-Msh5 function, we mutagenized 57 residues in Saccharomyces cerevisiae Msh4 and Msh5 that are either conserved across all Msh4/5 family members or are specific to Msh4 and Msh5. The Msh5 subunit appeared more sensitive to mutagenesis. We identified msh4 and msh5 threshold (msh4/5-t) mutants that showed wild-type spore viability and crossover interference but displayed, compared to wild-type, up to a two-fold decrease in crossing over on large and medium sized chromosomes (XV, VII, VIII). Crossing over on a small chromosome, however, approached wild-type levels. The msh4/5-t mutants also displayed synaptonemal complex assembly defects. A triple mutant containing a msh4/5-t allele and mutations that decreased meiotic double-strand break levels (spo11-HA) and crossover interference (pch2Δ) showed synergistic defects in spore viability. Together these results indicate that the baker's yeast meiotic cell does not require the ∼90 crossovers maintained by crossover homeostasis to form viable spores. They also show that Pch2-mediated crossover interference is important to maintain meiotic viability when crossovers become limiting.


Zdroje

1. PetronczkiM

SiomosMF

NasmythK

2003 Un ménage à quatre: the molecular biology of chromosome segregation in meiosis. Cell 112 423 440

2. YuHG

KoshlandD

2005 Chromosome morphogenesis: condensin-dependent cohesin removal during meiosis. Cell 123 397 407

3. PageSL

HawleyRS

2003 Chromosome choreography: the meiotic ballet. Science 301 785 789

4. KeeneyS

GirouxCN

KlecknerN

1997 Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88 375 384

5. AllersT

LichtenM

2001 Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106 47 57

6. HunterN

KlecknerN

2001 The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106 59 70

7. BuhlerC

BordeV

LichtenM

2007 Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae. PLoS Biol 5 e324 doi:10.1371/journal.pbio.0050324

8. ManceraE

BourgonR

BrozziA

HuberW

SteinmetzLM

2008 High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454 479 485

9. MortimerRK

SchildD

ContopoulouCR

KansJA

1991 Genetic and physical maps of Saccharomyces cerevisiae. Methods Enzymol 194 827 863

10. CherryJM

BallC

WengS

JuvikG

SchmidtR

1997 Genetic and physical maps of Saccharomyces cerevisiae. Nature 387 67 73

11. ChenSY

TsubouchiT

RockmillB

SandlerJS

RichardsDR

2008 Global Analysis of the Meiotic Crossover Landscape. Dev Cell 15 401 415

12. HillersKJ

VilleneuveAM

2003 Chromosome-wide control of meiotic crossing over in C. elegans. Curr Biol 13 1641 1647

13. KlecknerN

ZicklerD

JonesGH

DekkerJ

PadmoreR

2004 A mechanical basis for chromosome function. Proc Natl Acad Sci USA 101 12592 12597

14. HillersKJ

2004 Crossover interference. Curr Biol 14 R1036 1037

15. StahlFW

FossHM

YoungLS

BortsRH

AbdullahMF

2004 Does crossover interference count in Saccharomyces cerevisiae? Genetics 168 35 48

16. BörnerGV

KlecknerN

HunterN

2004 Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117 29 45

17. SchwachaA

KlecknerN

1995 Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83 783 791

18. AllersT

LichtenM

2001 Intermediates of yeast meiotic recombination contain heteroduplex DNA. Mol Cell 8 225 231

19. LaoJP

OhSD

ShinoharaM

ShinoharaA

HunterN

2008 Rad52 promotes postinvasion steps of meiotic double-strand-break repair. Mol Cell 29 517 524

20. MartiniE

DiazRL

HunterN

KeeneyS

2006 Crossover homeostasis in yeast meiosis. Cell 126 285 295

21. ZandersS

AlaniE

2009 The pch2Delta mutation in baker's yeast alters meiotic crossover levels and confers a defect in crossover interference. PLoS Genet 5 e1000571 doi:10.1371/journal.pgen.1000571

22. BarchiM

RoigI

Di GiacomoM

de RooijDG

KeeneyS

2008 ATM promotes the obligate XY crossover and both crossover control and chromosome axis integrity on autosomes. PLoS Genet 4 e1000076 doi:10.1371/journal.pgen.1000076

23. de los SantosT

HunterN

LeeC

LarkinB

LoidlJ

2003 The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164 81 94

24. ArguesoJL

WanatJ

GemiciZ

AlaniE

2004 Competing crossover pathways act during meiosis in Saccharomyces cerevisiae. Genetics 168 1805 1816

25. Ross-MacdonaldP

RoederGS

1994 Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79 1069 1080

26. HollingsworthNM

PonteL

HalseyC

1995 MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev 9 1728 1739

27. NovakJE

Ross-MacdonaldPB

RoederGS

2001 The budding yeast Msh4 protein functions in chromosome synapsis and the regulation of crossover distribution. Genetics 158 1013 1025

28. LynnA

SoucekR

BörnerGV

2007 ZMM proteins during meiosis: crossover artists at work. Chromosome Res 15 591 605

29. ShinoharaM

OhSD

HunterN

ShinoharaA

2008 Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nat Genet 40 299 309

30. TsubouchiT

ZhaoH

RoederGS

2006 The meiosis-specific Zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with Zip2. Dev Cell 10 809 819

31. AgarwalS

RoederGS

2000 Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102 245 255

32. ChuaPR

RoederGS

1998 Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93 349 359

33. SymM

EngebrechtJA

RoederGS

1993 ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72 365 378

34. NakagawaT

OgawaH

1999 The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. EMBO J 18 5714 5723

35. ObmolovaG

BanC

HsiehP

YangW

2000 Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature 407 703 710

36. LamersMH

PerrakisA

EnzlinJH

WinterwerpHH

de WindN

2000 The crystal structure of DNA mismatch repair protein MutS binding to a G×T mismatch. Nature 407 711 717

37. KneitzB

CohenPE

AvdievichE

ZhuL

KaneMF

2000 MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev 14 1085 1097

38. EdelmannW

CohenPE

KneitzB

WinandN

LiaM

1999 Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nat Genet 21 123 127

39. de VriesSS

BaartEB

DekkerM

SiezenA

de RooijDG

1999 Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev 13 523 531

40. FungJC

RockmillB

OdellM

RoederGS

2004 Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116 795 802

41. SnowdenT

AcharyaS

ButzC

BerardiniM

FishelR

2004 hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol Cell 15 437 451

42. HoffmannER

BortsRH

2004 Meiotic recombination intermediates and mismatch repair proteins. Cytogenet Genome Res 107 232 248

43. WhitbyMC

2005 Making crossovers during meiosis. Biochem Soc Trans 33 1451 1455

44. NishantKT

PlysAJ

AlaniE

2008 A mutation in the putative MLH3 endonuclease domain confers a defect in both mismatch repair and meiosis in Saccharomyces cerevisiae. Genetics 179 747 755

45. KolasNK

CohenPE

2004 Novel and diverse functions of the DNA mismatch repair family in mammalian meiosis and recombination. Cytogenet Genome Res 107 216 231

46. KolasNK

SvetlanovA

LenziML

MacalusoFP

LipkinSM

2005 Localization of MMR proteins on meiotic chromosomes in mice indicates distinct functions during prophase I. J Cell Biol 171 447 458

47. Santucci-DarmaninS

NeytonS

LespinasseF

SaunièresA

GaudrayP

2002 The DNA mismatch-repair MLH3 protein interacts with MSH4 in meiotic cells, supporting a role for this MutL homolog in mammalian meiotic recombination. Hum Mol Genet 11 1697 1706

48. SvetlanovA

CohenPE

2004 Mismatch repair proteins, meiosis, and mice: understanding the complexities of mammalian meiosis. Exp Cell Res 296 71 79

49. KneitzB

CohenPE

AvdievichE

ZhuL

KaneMF

2000 MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev 14 1085 1097

50. Santucci-DarmaninS

WalpitaD

LespinasseF

DesnuelleC

AshleyT

2000 MSH4 acts in conjunction with MLH1 during mammalian meiosis. FASEB J 14 1539 1547

51. StorlazziA

GarganoS

Ruprich-RobertG

FalqueM

DavidM

2010 Recombination proteins mediate meiotic spatial chromosome organization and pairing. Cell 141 94 106

52. PochartP

WolteringD

HollingsworthNM

1997 Conserved properties between functionally distinct MutS homologs in yeast. J Biol Chem 272 30345 30349

53. KijasAW

StudamireB

AlaniE

2003 Msh2 separation of function mutations confer defects in the initiation steps of mismatch repair. J Mol Biol 331 123 38

54. WarrenJJ

PohlhausTJ

ChangelaA

IyerRR

ModrichPL

2007 Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell 26 579 592

55. AlaniE

SokolskyT

StudamireB

MiretJJ

LahueRS

1997 Genetic and biochemical analysis of Msh2p-Msh6p: role of ATP hydrolysis and Msh2p-Msh6p subunit interactions in mismatch base pair recognition. Mol Cell Biol 17 2436 2347

56. KabackDB

GuacciV

BarberD

MahonJW

1992 Chromosome size-dependent control of meiotic recombination. Science 256 228 232

57. KabackDB

BarberD

MahonJ

LambJ

YouJ

1999 Chromosome size-dependent control of meiotic reciprocal recombination in Saccharomyces cerevisiae: the role of crossover interference. Genetics 152 1475 1486

58. TurneyD

de Los SantosT

HollingsworthNM

2004 Does chromosome size affect map distance and genetic interference in budding yeast? Genetics 168 2421 2424

59. AbdullahMF

HoffmannER

CottonVE

BortsRH

2004 A role for the MutL homologue MLH2 in controlling heteroduplex formation and in regulating between two different crossover pathways in budding yeast. Cytogenet Genome Res 107 180 190

60. WanatJJ

KimKP

KoszulR

ZandersS

WeinerB

2008 Csm4, in collaboration with Ndj1, mediates telomere-led chromosome dynamics and recombination during yeast meiosis. PLoS Genet 4 e1000188 doi:10.1371/journal.pgen.1000188

61. PapazianHP

1952 The analysis of tetrad data. Genetics 37 175 188

62. SnowR

1979 Maximum likelihood estimation of linkage and interference from tetrad data. Genetics 92 231 245

63. StahlFW

2008 On the “NPD ratio” as a test for crossover interference. Genetics 179 701 704

64. San-SegundoPA

RoederGS

1999 Pch2 links chromatin silencing to meiotic checkpoint control. Cell 97 313 324

65. WuHY

BurgessSM

2006 Two distinct surveillance mechanisms monitor meiotic chromosome metabolism in budding yeast. Curr Biol 16 2473 2479

66. JoshiN

BarotA

JamisonC

BörnerGV

2009 Pch2 links chromosome axis remodeling at future crossover sites and crossover distribution during yeast meiosis. PLoS Genet 5 e1000557 doi:10.1371/journal.pgen.1000557

67. BörnerGV

BarotA

KlecknerN

2008 Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis. Proc Natl Acad Sci USA 105 3327 3332

68. BerchowitzLE

CopenhaverGP

2010 Genetic Interference: Don't stand so close to me. Curr Genomics 11 91 102

69. KellerPJ

KnopM

2009 Evolution of mutational robustness in the yeast genome: a link to essential genes and meiotic recombination hotspots. PLoS Genet 5 e1000533 doi:10.1371/journal.pgen.1000533

70. KabackDB

SteensmaHY

de JongeP

1989 Enhanced meiotic recombination on the smallest chromosome of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 86 3694 3698

71. GertonJL

DeRisiJ

ShroffR

LichtenM

BrownPO

2000 Inaugural article: global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 97 11383 11390

72. BlitzblauHG

BellGW

RodriguezJ

BellSP

HochwagenA

2007 Mapping of meiotic single-stranded DNA reveals double-stranded-break hotspots near centromeres and telomeres. Curr Biol 17 2003 2012

73. KingJS

MortimerRK

1990 A polymerization model of chiasma interference and corresponding computer simulation. Genetics 126 1127 1138

74. NabeshimaK

VilleneuveAM

HillersKJ

2004 Chromosome-wide regulation of meiotic crossover formation in Caenorhabditis elegans requires properly assembled chromosome axes. Genetics 168 1275 1292

75. DrotschmannK

YangW

BrownewellFE

KoolET

KunkelTA

2001 Asymmetric recognition of DNA local distortion. Structure-based functional studies of eukaryotic Msh2-Msh6. J Biol Chem 276 46225 46229

76. BowersJ

SokolskyT

QuachT

AlaniE

1999 A mutation in the MSH6 subunit of the Saccharomyces cerevisiae MSH2-MSH6 complex disrupts mismatch recognition. J Biol Chem 274 16115 11625

77. MartikD

BaitingerC

ModrichP

2004 Differential specificities and simultaneous occupancy of human MutSalpha nucleotide binding sites. J Biol Chem 279 28402 28410

78. BjornsonKP

ModrichP

2003 Differential and simultaneous adenosine di- and triphosphate binding by MutS. J Biol Chem 278 18557 18562

79. AntonyE

KhubchandaniS

ChenS

HingoraniMM

2006 Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2-Msh6 mismatch repair protein. DNA Repair 5 153 162

80. MazurDJ

MendilloML

KolodnerRD

2006 Inhibition of Msh6 ATPase activity by mispaired DNA induces a Msh2(ATP)-Msh6(ATP) state capable of hydrolysis-independent movement along DNA. Mol Cell 22 39 49

81. AntonyE

HingoraniMM

2003 Mismatch recognition-coupled stabilization of Msh2-Msh6 in an ATP-bound state at the initiation of DNA repair. Biochemistry 42 7682 7693

82. BlackwellLJ

BjornsonKP

AllenDJ

ModrichP

2001 Distinct MutS DNA-binding modes that are differentially modulated by ATP binding and hydrolysis. J Biol Chem 276 34339 34347

83. MendilloML

MazurDJ

KolodnerRD

2005 Analysis of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 and MLH1-PMS1 complexes with DNA using a reversible DNA end-blocking system. J Biol Chem 280 22245 22257

84. AcharyaS

FosterPL

BrooksP

FishelR

2003 The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair. Mol Cell 12 233 246

85. SnowdenT

ShimKS

SchmutteC

AcharyaS

FishelR

2008 hMSH4-hMSH5 adenosine nucleotide processing and interactions with homologous recombination machinery. J Biol Chem 283 145 154

86. RoseMD

WinstonF

HieterP

1990 Methods in yeast genetics N.Y. Cold Spring Harbor Laboratory Press

87. WachA

BrachatA

PöhlmannR

PhilippsenP

1994 New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10 1793 1808

88. GoldsteinAL

McCuskerJH

1999 Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15 1541 1553

89. GietzRD

SchiestlRH

WillemsAR

WoodsRA

1995 Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11 355 360

90. VojtekAB

HollenbergSM

CooperJA

1993 Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74 205 214

91. GietzRD

WoodsRA

2002 Screening for protein-protein interactions in the yeast two-hybrid system. Methods Mol Biol 185 471 486

92. ArguesoJL

KijasAW

SarinS

HeckJ

WaaseM

2003 Systematic mutagenesis of the Saccharomyces cerevisiae MLH1 gene reveals distinct roles for Mlh1p in meiotic crossing over and in vegetative and meiotic mismatch repair. Mol Cell Biol 23 873 886

93. ShinoharaM

GasiorSL

BishopDK

ShinoharaA

2000 Tid1/Rdh54 promotes colocalization of Rad51 and Dmc1 during meiotic recombination. Proc Natl Acad Sci USA 97 10814 10819

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#