#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Young Duplicate Gene Plays Essential Roles in Spermatogenesis by Regulating Several Y-Linked Male Fertility Genes


Gene duplication is supposed to be the major source for genetic innovations. However, how a new duplicate gene acquires functions by integrating into a pathway and results in adaptively important phenotypes has remained largely unknown. Here, we investigated the biological roles and the underlying molecular mechanism of the young kep1 gene family in the Drosophila melanogaster species subgroup to understand the origin and evolution of new genes with new functions. Sequence and expression analysis demonstrates that one of the new duplicates, nsr (novel spermatogenesis regulator), exhibits positive selection signals and novel subcellular localization pattern. Targeted mutagenesis and whole-transcriptome sequencing analysis provide evidence that nsr is required for male reproduction associated with sperm individualization, coiling, and structural integrity of the sperm axoneme via regulation of several Y chromosome fertility genes post-transcriptionally. The absence of nsr-like expression pattern and the presence of the corresponding cis-regulatory elements of the parental gene kep1 in the pre-duplication species Drosophila yakuba indicate that kep1 might not be ancestrally required for male functions and that nsr possibly has experienced the neofunctionalization process, facilitated by changes of trans-regulatory repertories. These findings not only present a comprehensive picture about the evolution of a new duplicate gene but also show that recently originated duplicate genes can acquire multiple biological roles and establish novel functional pathways by regulating essential genes.


Vyšlo v časopise: A Young Duplicate Gene Plays Essential Roles in Spermatogenesis by Regulating Several Y-Linked Male Fertility Genes. PLoS Genet 6(12): e32767. doi:10.1371/journal.pgen.1001255
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001255

Souhrn

Gene duplication is supposed to be the major source for genetic innovations. However, how a new duplicate gene acquires functions by integrating into a pathway and results in adaptively important phenotypes has remained largely unknown. Here, we investigated the biological roles and the underlying molecular mechanism of the young kep1 gene family in the Drosophila melanogaster species subgroup to understand the origin and evolution of new genes with new functions. Sequence and expression analysis demonstrates that one of the new duplicates, nsr (novel spermatogenesis regulator), exhibits positive selection signals and novel subcellular localization pattern. Targeted mutagenesis and whole-transcriptome sequencing analysis provide evidence that nsr is required for male reproduction associated with sperm individualization, coiling, and structural integrity of the sperm axoneme via regulation of several Y chromosome fertility genes post-transcriptionally. The absence of nsr-like expression pattern and the presence of the corresponding cis-regulatory elements of the parental gene kep1 in the pre-duplication species Drosophila yakuba indicate that kep1 might not be ancestrally required for male functions and that nsr possibly has experienced the neofunctionalization process, facilitated by changes of trans-regulatory repertories. These findings not only present a comprehensive picture about the evolution of a new duplicate gene but also show that recently originated duplicate genes can acquire multiple biological roles and establish novel functional pathways by regulating essential genes.


Zdroje

1. OhnoS

1970 Evolution by gene duplication. New York Springer-Verlag

2. ZhouQ

WangW

2008 On the origin and evolution of new genes–a genomic and experimental perspective. J Genet Genomics 35 639 648

3. LongM

BetranE

ThorntonK

WangW

2003 The origin of new genes: glimpses from the young and old. Nat Rev Genet 4 865 875

4. LynchM

ForceA

2000 The probability of duplicate gene preservation by subfunctionalization. Genetics 154 459 473

5. LynchM

ConeryJS

2000 The evolutionary fate and consequences of duplicate genes. Science 290 1151 1155

6. LoppinB

LepetitD

DorusS

CoubleP

KarrTL

2005 Origin and neofunctionalization of a Drosophila paternal effect gene essential for zygote viability. Curr Biol 15 87 93

7. KalameghamR

SturgillD

SiegfriedE

OliverB

2007 Drosophila mojoless, a retroposed GSK-3, has functionally diverged to acquire an essential role in male fertility. Mol Biol Evol 24 732 742

8. DaiH

ChenY

ChenS

MaoQ

KennedyD

2008 The evolution of courtship behaviors through the origination of a new gene in Drosophila. Proc Natl Acad Sci U S A 105 7478 7483

9. LiD

DongY

JiangY

JiangH

CaiJ

2010 A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand. Cell Res 20 408 420

10. RogersRL

BedfordT

LyonsAM

HartlDL

2010 Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster. Proc Natl Acad Sci U S A 107 10943 10948

11. ZhangJ

DeanAM

BrunetF

LongM

2004 Evolving protein functional diversity in new genes of Drosophila. Proc Natl Acad Sci U S A 101 16246 16250

12. NurminskyDI

NurminskayaMV

De AguiarD

HartlDL

1998 Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 396 572 575

13. ZhangJ

ZhangYP

RosenbergHF

2002 Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat Genet 30 411 415

14. WangW

BrunetFG

NevoE

LongM

2002 Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc Natl Acad Sci U S A 99 4448 4453

15. YangS

ArguelloJR

LiX

DingY

ZhouQ

2008 Repetitive element-mediated recombination as a mechanism for new gene origination in Drosophila. PLoS Genet 4 e3 doi:10.1371/journal.pgen.0040003

16. Di FruscioM

StyhlerS

WikholmE

BoulangerMC

LaskoP

2003 Kep1 interacts genetically with dredd/caspase-8, and kep1 mutants alter the balance of dredd isoforms. Proc Natl Acad Sci U S A 100 1814 1819

17. YangZ

1998 Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15 568 573

18. TamuraK

SubramanianS

KumarS

2004 Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol 21 36 44

19. LiW

1997 Molecular Evoltuion. Sunderland Sinauer Associates

20. PritchardJK

SchaefferSW

1997 Polymorphism and divergence at a Drosophila pseudogene locus. Genetics 147 199 208

21. HegerA

PontingCP

2007 Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes. Genome Res 17 1837 1849

22. Di FruscioM

ChenT

BonyadiS

LaskoP

RichardS

1998 The identification of two Drosophila K homology domain proteins. Kep1 and SAM are members of the Sam68 family of GSG domain proteins. J Biol Chem 273 30122 30130

23. VibranovskiMD

LopesHF

KarrTL

LongM

2009 Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes. PLoS Genet 5 e1000731 doi:10.1371/journal.pgen.1000731

24. LamondAI

SpectorDL

2003 Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4 605 612

25. SpectorDL

1993 Nuclear organization of pre-mRNA processing. Curr Opin Cell Biol 5 442 447

26. Byun-McKaySA

GeetaR

2007 Protein subcellular relocalization: a new perspective on the origin of novel genes. Trends Ecol Evol 22 338 344

27. XieHB

GolicKG

2004 Gene deletions by ends-in targeting in Drosophila melanogaster. Genetics 168 1477 1489

28. RobertsonHM

PrestonCR

PhillisRW

Johnson-SchlitzDM

BenzWK

1988 A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118 461 470

29. LindsleyDL

TokuyasuKT

1980 Spermatogensis.

AshburnerM

WrightTR

Genetics and Biology of Drosophila New York Academic Press 225 294

30. FabrizioJJ

HimeG

LemmonSK

BazinetC

1998 Genetic dissection of sperm individualization in Drosophila melanogaster. Development 125 1833 1843

31. SantelA

WinhauerT

BlumerN

Renkawitz-PohlR

1997 The Drosophila don juan (dj) gene encodes a novel sperm specific protein component characterized by an unusual domain of a repetitive amino acid motif. Mech Dev 64 19 30

32. WangZ

GersteinM

SnyderM

2009 RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10 57 63

33. GoldsteinLS

HardyRW

LindsleyDL

1982 Structural genes on the Y chromosome of Drosophila melanogaster. Proc Natl Acad Sci U S A 79 7405 7409

34. GepnerJ

HaysTS

1993 A fertility region on the Y chromosome of Drosophila melanogaster encodes a dynein microtubule motor. Proc Natl Acad Sci U S A 90 11132 11136

35. CarvalhoAB

LazzaroBP

ClarkAG

2000 Y chromosomal fertility factors kl-2 and kl-3 of Drosophila melanogaster encode dynein heavy chain polypeptides. Proc Natl Acad Sci U S A 97 13239 13244

36. HardyRW

LindsleyDL

LivakKJ

LewisB

SiverstenAL

1984 Cytogenetic analysis of a segment of the Y chromosome of Drosophila melanogaster. Genetics 107 591 610

37. HardyRW

TokuyasuKT

LindsleyDL

1981 Analysis of spermatogenesis in Drosophila melanogaster bearing deletions for Y-chromosome fertility genes. Chromosoma 83 593 617

38. ZhangP

StankiewiczRL

1998 Y-Linked male sterile mutations induced by P element in Drosophila melanogaster. Genetics 150 735 744

39. TimakovB

ZhangP

2000 Genetic analysis of a Y-chromosome region that induces triplosterile phenotypes and is essential for spermatid individualization in Drosophila melanogaster. Genetics 155 179 189

40. ZhaoJ

HymanL

MooreC

1999 Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63 405 445

41. KenanDJ

QueryCC

KeeneJD

1991 RNA recognition: towards identifying determinants of specificity. Trends Biochem Sci 16 214 220

42. SinghR

ValcarcelJ

2005 Building specificity with nonspecific RNA-binding proteins. Nat Struct Mol Biol 12 645 653

43. MarquesAC

DupanloupI

VinckenboschN

ReymondA

KaessmannH

2005 Emergence of young human genes after a burst of retroposition in primates. PLoS Biol 3 e357 doi:10.1371/journal.pbio.0030357

44. VinckenboschN

DupanloupI

KaessmannH

2006 Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci U S A 103 3220 3225

45. ZhangY

SturgillD

ParisiM

KumarS

OliverB

2007 Constraint and turnover in sex-biased gene expression in the genus Drosophila. Nature 450 233 237

46. KaessmannH

VinckenboschN

LongM

2009 RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet 10 19 31

47. VibranovskiMD

ZhangY

LongM

2009 General gene movement off the X chromosome in the Drosophila genus. Genome Res 19 897 903

48. de KresterDM

KerrJB

1994 The cytology of testis. The Physiology of Reproduction New York Raven Press Ltd 1177 1290

49. JouannetP

EscallerD

SerresC

DavidG

1983 Motility of human sperm without outer dynein arms. J Submicrosc Cytol 15 67 71

50. WolfJP

FeneuxD

EscalierD

RodriguesD

FrydmanR

1993 Pregnancy after subzonal insemination with spermatozoa lacking outer dynein arms. J Reprod Fertil 97 487 492

51. KeatingJ

GrundyCE

FiveyPS

ElliottM

RobinsonJ

1997 Investigation of the association between the presence of cytoplasmic residues on the human sperm midpiece and defective sperm function. J Reprod Fertil 110 71 77

52. KumarS

TamuraK

NeiM

2004 MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5 150 163

53. YangZ

NielsenR

2000 Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17 32 43

54. RubinGM

SpradlingAC

1982 Genetic transformation of Drosophila with transposable element vectors. Science 218 348 353

55. BaroloS

CarverLA

PosakonyJW

2000 GFP and beta-galactosidase transformation vectors for promoter/enhancer analysis in Drosophila. Biotechniques 29 726, 728, 730, 732

56. PuigO

CasparyF

RigautG

RutzB

BouveretE

2001 The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24 218 229

57. WangZ

MannRS

2003 Requirement for two nearly identical TGIF-related homeobox genes in Drosophila spermatogenesis. Development 130 2853 2865

58. HeatwoleVM

HaynesSR

1996 Association of RB97D, an RRM protein required for male fertility, with a Y chromosome lampbrush loop in Drosophila spermatocytes. Chromosoma 105 285 292

59. TusherVG

TibshiraniR

ChuG

2001 Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98 5116 5121

60. LiR

YuC

LiY

LamTW

YiuSM

2009 SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25 1966 1967

61. WangL

FengZ

WangX

ZhangX

2010 DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26 136 138

62. MortazaviA

WilliamsBA

McCueK

SchaefferL

WoldB

2008 Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5 621 628

63. KieferBI

1970 Development, organization, and degeneration of the Drosophila sperm flagellum. J Cell Sci 6 177 194

64. MitchisonTJ

MitchisonHM

2010 How cilia beat. Nature 463 308 309

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#