#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cleavage of Phosphorothioated DNA and Methylated DNA by the Type IV Restriction Endonuclease ScoMcrA


Many taxonomically diverse prokaryotes enzymatically modify their DNA by replacing a non-bridging oxygen with a sulfur atom at specific sequences. The biological implications of this DNA S-modification (phosphorothioation) were unknown. We observed that simultaneous expression of the dndA-E gene cluster from Streptomyces lividans 66, which is responsible for the DNA S-modification, and the putative Streptomyces coelicolor A(3)2 Type IV methyl-dependent restriction endonuclease ScoA3McrA (Sco4631) leads to cell death in the same host. A His-tagged derivative of ScoA3McrA cleaved S-modified DNA and also Dcm-methylated DNA in vitro near the respective modification sites. Double-strand cleavage occurred 16–28 nucleotides away from the phosphorothioate links. DNase I footprinting demonstrated binding of ScoA3McrA to the Dcm methylation site, but no clear binding could be detected at the S-modified site under cleavage conditions. This is the first report of in vitro endonuclease activity of a McrA homologue and also the first demonstration of an enzyme that specifically cleaves S-modified DNA.


Vyšlo v časopise: Cleavage of Phosphorothioated DNA and Methylated DNA by the Type IV Restriction Endonuclease ScoMcrA. PLoS Genet 6(12): e32767. doi:10.1371/journal.pgen.1001253
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001253

Souhrn

Many taxonomically diverse prokaryotes enzymatically modify their DNA by replacing a non-bridging oxygen with a sulfur atom at specific sequences. The biological implications of this DNA S-modification (phosphorothioation) were unknown. We observed that simultaneous expression of the dndA-E gene cluster from Streptomyces lividans 66, which is responsible for the DNA S-modification, and the putative Streptomyces coelicolor A(3)2 Type IV methyl-dependent restriction endonuclease ScoA3McrA (Sco4631) leads to cell death in the same host. A His-tagged derivative of ScoA3McrA cleaved S-modified DNA and also Dcm-methylated DNA in vitro near the respective modification sites. Double-strand cleavage occurred 16–28 nucleotides away from the phosphorothioate links. DNase I footprinting demonstrated binding of ScoA3McrA to the Dcm methylation site, but no clear binding could be detected at the S-modified site under cleavage conditions. This is the first report of in vitro endonuclease activity of a McrA homologue and also the first demonstration of an enzyme that specifically cleaves S-modified DNA.


Zdroje

1. RobertsonKD

2005 DNA Methylation and human disease. Nat Rev Genet 6 597 610

2. BickleTA

KrugerDH

1993 Biology of DNA restriction. Microbiol Rev 57 434 450

3. DrydenDT

MurrayNE

RaoDN

2001 Nucleoside triphosphate-dependent restriction enzymes. Nucleic Acids Res 29 3728 3741

4. RobertsRJ

VinczeT

PosfaiJ

MacelisD

2010 REBASE–a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 38 D234 236

5. BairCL

BlackLW

2007 A type IV modification dependent restriction nuclease that targets glucosylated hydroxymethyl cytosine modified DNAs. J Mol Biol 366 768 778

6. ZhouX

HeX

LiangJ

LiA

XuT

2005 A novel DNA modification by sulphur. Mol Microbiol 57 1428 1438

7. ZhouX

DengZ

FirminJL

HopwoodDA

KieserT

1988 Site-specific degradation of Streptomyces lividans DNA during electrophoresis in buffers contaminated with ferrous iron. Nucleic Acids Res 16 4341 4352

8. BentleySD

ChaterKF

Cerdeno-TarragaAM

ChallisGL

ThomsonNR

2002 Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417 141 147

9. Gonzalez-CeronG

Miranda-OlivaresOJ

Servin-GonzalezL

2009 Characterization of the methyl-specific restriction system of Streptomyces coelicolor A3(2) and of the role played by laterally acquired nucleases. FEMS Microbiol Lett 301 35 43

10. FlettF

MersiniasV

SmithCP

1997 High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155 223 229

11. KieserT

BibbMJ

ChaterKF

ButterMJ

HopwoodDA

2000 Practical Streptomyces genetics. a laboratory manual. Norwich John Innes Foundation, United Kingdom

12. JayapalKP

LianW

GlodF

ShermanDH

HuWS

2007 Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics 8 229

13. HeX

OuHY

YuQ

ZhouX

WuJ

2007 Analysis of a genomic island housing genes for DNA S-modification system in Streptomyces lividans 66 and its counterparts in other distantly related bacteria. Mol Microbiol 65 1034 1048

14. BibbMJ

WardJM

KieserT

CohenSN

HopwoodDA

1981 Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Mol Gen Genet 184 230 240

15. RaleighEA

WilsonG

1986 Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc Natl Acad Sci U S A 83 9070 9074

16. MulliganEA

DunnJJ

2008 Cloning, purification and initial characterization of E. coli McrA, a putative 5-methylcytosine-specific nuclease. Protein Expr Purif 62 98 103

17. MulliganEA

HatchwellE

McCorkleSR

DunnJJ

2010 Differential binding of Escherichia coli McrA protein to DNA sequences that contain the dinucleotide m5CpG. Nucleic Acids Res 38 1997 2005

18. WangL

ChenS

XuT

TaghizadehK

WishnokJS

2007 Phosphorothioation of DNA in bacteria by dnd genes. Nat Chem Biol 3 709 710

19. RayT

MillsA

DysonP

1995 Tris-dependent oxidative DNA strand scission during electrophoresis. Electrophoresis 16 888 894

20. OuHY

HeX

ShaoY

TaiC

RajakumarK

2009 dndDB: a database focused on phosphorothioation of the DNA backbone. PLoS ONE 4 e5132 doi:10.1371/journal.pone.0005132

21. LiangJ

WangZ

HeX

LiJ

ZhouX

2007 DNA modification by sulfur: analysis of the sequence recognition specificity surrounding the modification sites. Nucleic Acids Res 35 2944 2954

22. SunY

HeX

LiangJ

ZhouX

DengZ

2009 Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in Streptomyces lividans 1326. Appl Microbiol Biotechnol 82 303 310

23. EvansM

KaczmarekFS

Stutzman-EngwallK

DysonP

1994 Characterization of a Streptomyces-lividans-type site-specific DNA modification system in the avermectin-producer Streptomyces avermitilis permits investigation of two novel giant linear plasmids, pSA1 and pSA2. Microbiology 140 Pt 6 1367 1371

24. HsuM

BergP

1978 Altering the specificity of restriction endonuclease: effect of replacing Mg2+ with Mn2+. Biochemistry 17 131 138

25. ThielkingV

SelentU

KohlerE

LandgrafA

WolfesH

1992 Mg2+ confers DNA binding specificity to the EcoRV restriction endonuclease. Biochemistry 31 3727 3732

26. JanulaitisA

PetrusyteM

ManelieneZ

KlimasauskasS

ButkusV

1992 Purification and properties of the Eco57I restriction endonuclease and methylase–prototypes of a new class (type IV). Nucleic Acids Res 20 6043 6049

27. StewartFJ

RaleighEA

1998 Dependence of McrBC cleavage on distance between recognition elements. Biol Chem 379 611 616

28. Jurenaite-UrbanavicieneS

KazlauskieneR

UrbelyteV

ManelieneZ

PetrusyteM

2001 Characterization of BseMII, a new type IV restriction-modification system, which recognizes the pentanucleotide sequence 5′-CTCAG(N)(10/8). Nucleic Acids Res 29 895 903

29. StewartFJ

PanneD

BickleTA

RaleighEA

2000 Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme. J Mol Biol 298 611 622

30. ChanSH

OpitzL

HigginsL

O'LoaneD

XuSY

2010 Cofactor requirement of HpyAV restriction endonuclease. PLoS ONE 5 e9071 doi:10.1371/journal.pone.0009071

31. ZhengY

Cohen-KarniD

XuD

ChinHG

WilsonG

2010 A unique family of Mrr-like modification-dependent restriction endonucleases. Nucleic Acids Res

32. RobertsRJ

BelfortM

BestorT

BhagwatAS

BickleTA

2003 A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31 1805 1812

33. DysonP

EvansM

1998 Novel post-replicative DNA modification in Streptomyces: analysis of the preferred modification site of plasmid pIJ101. Nucleic Acids Res 26 1248 1253

34. SutherlandE

CoeL

RaleighEA

1992 McrBC: a multisubunit GTP-dependent restriction endonuclease. J Mol Biol 225 327 348

35. RaleighEA

TrimarchiR

RevelH

1989 Genetic and physical mapping of the mcrA (rglA) and mcrB (rglB) loci of Escherichia coli K-12. Genetics 122 279 296

36. RaleighEA

BennerJ

BloomF

BraymerHD

DeCruzE

1991 Nomenclature relating to restriction of modified DNA in Escherichia coli. J Bacteriol 173 2707 2709

37. GorbalenyaAE

1994 Self-splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Sci 3 1117 1120

38. DalgaardJZ

KlarAJ

MoserMJ

HolleyWR

ChatterjeeA

1997 Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res 25 4626 4638

39. FukudaE

KaminskaKH

BujnickiJM

KobayashiI

2008 Cell death upon epigenetic genome methylation: a novel function of methyl-specific deoxyribonucleases. Genome Biol 9 R163

40. MacNeilDJ

1988 Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J Bacteriol 170 5607 5612

41. ThompsonCJ

WardJM

HopwoodDA

1982 Cloning of antibiotic resistance and nutritional genes in streptomycetes. J Bacteriol 151 668 677

42. OmerCA

CohenSN

1984 Plasmid formation in Streptomyces: excision and integration of the SLP1 replicon at a specific chromosomal site. Mol Gen Genet 196 429 438

43. ThompsonCJ

KieserT

WardJM

HopwoodDA

1982 Physical analysis of antibiotic-resistance genes from Streptomyces and their use in vector construction. Gene 20 51 62

44. BahlMI

HansenLH

SorensenSJ

2009 Persistence mechanisms of conjugative plasmids. Methods Mol Biol 532 73 102

45. FurutaY

AbeK

KobayashiI

2010 Genome comparison and context analysis reveals putative mobile forms of restriction-modification systems and related rearrangements. Nucleic Acids Res 38 2428 2443

46. AsakuraY

KobayashiI

2009 From damaged genome to cell surface: transcriptome changes during bacterial cell death triggered by loss of a restriction-modification gene complex. Nucleic Acids Res 37 3021 3031

47. CollierJ

2009 Epigenetic regulation of the bacterial cell cycle. Curr Opin Microbiol 12 722 729

48. MarinusMG

CasadesusJ

2009 Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev 33 488 503

49. ModrichP

1987 DNA mismatch correction. Annu Rev Biochem 56 435 466

50. LeeSC

OmerCA

BraschMA

CohenSN

1988 Analysis of recombination occurring at SLP1 att sites. J Bacteriol 170 5806 5813

51. XuT

YaoF

ZhouX

DengZ

YouD

2010 A novel host-specific restriction system associated with DNA backbone S-modification in Salmonella. Nucleic Acids Res

52. SambrookJ

FritschEF

ManiatisT

1989 Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor, N.Y Cold Spring Harbor Laboratory

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#