-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Dlouhé nekódující molekuly RNA jako regulátory mitogenem aktivované proteinkinázové dráhy (MAPK) v nádorech
Dlouhé nekódující molekuly RNA jako regulátory mitogenem aktivované proteinkinázové dráhy (MAPK) v nádorech
Úvod:
Mitogenem aktivovaná proteinkinázová dráha (MAPK) přispívá k regulaci mnoha buněčných funkcí, jako je proliferace a diferenciace buněk, mobilita a apoptóza. Extracelulární signálně regulovaná kináza 1/2 (ERK1/2), c-Jun N-terminální kináza (JNK) /p38 a ERK5 jsou tři hlavní moduly v této dráze. Kaskády Raf-ERK1/2 a JNK přispívají k proliferaci buněk, migraci a přežití a jsou hlavními regulátory maligního fenotypu. Tato dráha je sama regulována několika vnějšími signály, stejně jako bočními signály z jiných signálních drah, které vytvářejí komplexní síť. Dlouhé nekódující RNA (lncRNA) jako hlavní modulátory genové exprese na transkripční a posttranskripční úrovni a také regulují tuto dráhu. Kromě toho můžou lncRNA sloužit jako biomarker a cíl nových léčebných strategií u pacientů s nádory.Cíl:
Prozkoumat roli lncRNA v regulaci dráhy MAPK.Závěr:
Vzhledem k úloze této dráhy v patogenezi několika typů nádorů dochází ke změnám exprese lncRNA, které vedou ke změnám v dráze MAPK, což vede k inhibici apoptózy a indukci buněčné proliferace a migrace. Některé lncRNA se navíc podílejí na spojení mezi MAPK a jinými drahami souvisejícími s nádory, jako je dráha PI3K/Akt prostřednictvím regulace určitých sdílených proteinů mezi těmito drahami. Na základě dostupnosti některých protinádorových léčiv, modulujících tuto dráhu, by identifikace lncRNA, ovlivňující tuto dráhu pomohla při vytváření účinných terapií.Klíčová slova:
RNA – dlouhé nekódování – mitogenem aktivované proteinové kinázy – signální transdukce
Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.
Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.Obdrženo:
5. 12. 2017Přijato:
5. 2. 2018
Autoři: Tasharrofi Behnoosh; Ghafouri-Fard Soudeh
Působiště autorů: Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Vyšlo v časopise: Klin Onkol 2018; 31(2): 95-102
Kategorie: Přehled
prolekare.web.journal.doi_sk: https://doi.org/10.14735/amko201895Souhrn
Úvod:
Mitogenem aktivovaná proteinkinázová dráha (MAPK) přispívá k regulaci mnoha buněčných funkcí, jako je proliferace a diferenciace buněk, mobilita a apoptóza. Extracelulární signálně regulovaná kináza 1/2 (ERK1/2), c-Jun N-terminální kináza (JNK) /p38 a ERK5 jsou tři hlavní moduly v této dráze. Kaskády Raf-ERK1/2 a JNK přispívají k proliferaci buněk, migraci a přežití a jsou hlavními regulátory maligního fenotypu. Tato dráha je sama regulována několika vnějšími signály, stejně jako bočními signály z jiných signálních drah, které vytvářejí komplexní síť. Dlouhé nekódující RNA (lncRNA) jako hlavní modulátory genové exprese na transkripční a posttranskripční úrovni a také regulují tuto dráhu. Kromě toho můžou lncRNA sloužit jako biomarker a cíl nových léčebných strategií u pacientů s nádory.Cíl:
Prozkoumat roli lncRNA v regulaci dráhy MAPK.Závěr:
Vzhledem k úloze této dráhy v patogenezi několika typů nádorů dochází ke změnám exprese lncRNA, které vedou ke změnám v dráze MAPK, což vede k inhibici apoptózy a indukci buněčné proliferace a migrace. Některé lncRNA se navíc podílejí na spojení mezi MAPK a jinými drahami souvisejícími s nádory, jako je dráha PI3K/Akt prostřednictvím regulace určitých sdílených proteinů mezi těmito drahami. Na základě dostupnosti některých protinádorových léčiv, modulujících tuto dráhu, by identifikace lncRNA, ovlivňující tuto dráhu pomohla při vytváření účinných terapií.Klíčová slova:
RNA – dlouhé nekódování – mitogenem aktivované proteinové kinázy – signální transdukce
Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.
Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.Obdrženo:
5. 12. 2017Přijato:
5. 2. 2018
Zdroje
1. Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: Specific messages from ubiquitous messengers. Mol Cell Biol 1999; 19 (4): 2435–2444.
2. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 2004; 4 (12): 937–947. doi: 10.1038/nrc1503.
3. Li R, Zhang L, Jia L et al. Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation. Plos One 2014; 9 (6): e100893. doi: 10.1371/journal.pone.0100893.
4. Soudyab M, Iranpour M, Ghafouri-Fard S. The role of long non-coding RNAs in breast cancer. Arch Iran Med 2016; 19 (7): 508–517. doi: 0161907/AIM.0011.
5. Iranpour M, Soudyab M, Geranpayeh L et al. Expression analysis of four long noncoding RNAs in breast cancer. Tumour Biol 2016; 37 (3): 2933–2940. doi: 10.1007/s13277-015-4135-2.
6. Nikpayam E, Tasharrofi B, Sarrafzadeh S et al. The role of long non-coding RNAs in ovarian cancer. Iran Biomed J 2017; 21 (1): 3–15. doi: 10.6091/.21.1.24.
7. Dianatpour A, Ghafouri-Fard S. Long non coding RNA expression intersecting cancer and spermatogenesis: A systematic review. Asian Pac J Cancer Prev 2017; 18 (10): 2601–2610. doi: 10.22034/APJCP.2017.18.10. 2601.
8. Dianatpour A, Ghafouri-Fard S. The role of long non coding RNAs in the repair of dna double strand breaks. Int J Mol Cell Med 2017; 6 (1): 1–12.
9. Melissari MT, Grote P. Roles for long non-coding RNAs in physiology and disease. Pflugers Archiv 2016; 468 (6): 945–958. doi: 10.1007/s00424-016-1804-y.
10. Sarrafzadeh S, Geranpayeh L, Ghafouri-Fard S. Expression analysis of long non-coding PCAT-1in breast cancer. Int J Hematol Oncol Stem Cell Res 2017; 11 (3): 185–191.
11. Nikpayam E, Soudyab M, Tasharrofi B et al. Expression analysis of long non-coding ATB and its putative target in breast cancer. Breast Dis 2017; 37 (1): 11–20. doi: 10.3233/BD-160264.
12. Khorshidi HR, Taheri M, Noroozi R et al. ANRIL genetic variants in iranian breast cancer patients. Cell J 2017; 19 (Suppl 1): 72–78. doi: 10.22074/cellj.2017.4496.
13. Taheri M, Pouresmaeili F, Omrani MD et al. Association of ANRIL gene polymorphisms with prostate cancer and benign prostatic hyperplasia in an Iranian population. Biomark Med 2017; 11 (5): 413–422. doi: 10.2217/bmm-2016-0378.
14. Taheri M, Habibi M, Noroozi R et al. HOTAIR genetic variants are associated with prostate cancer and benign prostate hyperplasia in an Iranian population. Gene 2017; 613 : 20–24. doi: 10.1016/j.gene.2017.02.031.
15. Khorshidi HR, Taheri M, Noroozi R et al. Investigation of the association of HOTAIR single nucleotide polymorphisms and risk of breast cancer in an iranian population. Int J Cancer Manag 2017; 10 (5): e7498. doi: 10.5812/ijcm.7498.
16. Sarrafzadeh S, Geranpayeh L, Tasharrofi B et al. Expression study and clinical correlations of MYC and CCAT2 in breast cancer patients. Iran Biomed J 2017; 21 (5): 303–311.
17. Tasharrofi B, Soudyab M, Nikpayam E et al. Comparative expression analysis of hypoxia-inducible factor-alpha and its natural occurring antisense in breast cancer tissues and adjacent noncancerous tissues. Cell Biochem Funct 2016; 34 (8): 572–578. doi: 10.1002/cbf.3230.
18. Xu XC, Wan XF, Zhang ZR. Long non-coding RNA ANRIL promotes tumorigenesis in glioma via MAPK signaling pathways. Int J Clin Exp Patho 2016; 9 (10): 10803–10809.
19. Gooding AJ, Zhang B, Jahanbani FK et al. The lncRNA BORG drives breast cancer metastasis and disease recurrence. Sci Rep 2017; 7 : 12698. doi: 10.1038/s41598-017-12716-6.
20. Wang DN, Wang DB, Wang N et al. Long non-coding RNA BANCR promotes endometrial cancer cell proliferation and invasion by regulating MMP2 and MMP1 via ERK/MAPK signaling pathway. Cell Physiol Biochem 2016; 40 (3–4): 644–656. doi: 10.1159/000452577.
21. Quo QH, Zhao Y, Chen JJ et al. BRAF-activated long non-coding RNA contributes to colorectal cancer migration by inducing epithelial-mesenchymal transition. Oncol Lett 2014; 8 (2): 869–875. doi: 10.3892/ol.2014.2154.
22. Jiang WJ, Zhang DD, Xu BN et al. Long non-coding RNA BANCR promotes proliferation and migration of lung carcinoma via MAPK pathways. Biomed Pharmacother 2015; 69 : 90–95. doi: 10.1016/j.biopha.2014.11.027.
23. Baldinu P, Cossu A, Manca A et al. Identification of a novel candidate gene, CASC2, in a region of common allelic loss at chromosome 10q26 in human endometrial cancer. Hum Mutat 2004; 23 (4): 318–326. doi: 10.1002/humu.20015.
24. Baldinu P, Cossu A, Manca A et al. CASC2a gene is down-regulated in endometrial cancer. Anticancer Res 2007; 27 (1A): 235–243.
25. Wang P, Liu YH, Yao YL et al. Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21. Cell Signal 2015; 27 (2): 275–282. doi: 10.1016/j.cellsig.2014.11.011.
26. Cao Y, Xu R, Xu X et al. Downregulation of lncRNA CASC2 by microRNA-21 increases the proliferation and migration of renal cell carcinoma cells. Mol Med Rep 2016; 14 (1): 1019–1025. doi: 10.3892/mmr.2016.5337.
27. He X, Liu Z, Su J et al. Low expression of long noncoding RNA CASC2 indicates a poor prognosis and regulates cell proliferation in non-small cell lung cancer. Tumour Biol 2016; 37 (7): 9503–9510. doi: 10.1007/s13277-016-4787-6.
28. Huang G, Wu X, Li S et al. The long noncoding RNA CASC2 functions as a competing endogenous RNA by sponging miR-18a in colorectal cancer. Sci Rep 2016 20; 6 : 26524. doi: 10.1038/srep26524.
29. Gan Y, Han N, He X et al. Long non-coding RNA CASC2 regulates cell biological behaviour through the MAPK signalling pathway in hepatocellular carcinoma. Tumor Biol 2017; 39 (6): 1010428317706229. doi: 10.1177/1010428317706229.
30. Li P, Xue WJ, Feng Y et al. Long non-coding RNA CASC2 suppresses the proliferation of gastric cancer cells by regulating the MAPK signaling pathway. Am J Transl Res 2016; 8 (8): 3522–3529.
31. Gao R, Zhang R, Zhang C et al. Long noncoding RNA CCAT1 promotes cell proliferation and metastasis in human medulloblastoma via MAPK pathway. Tumori 2017 : 0. doi: 10.5301/tj.5000662.
32. Graham LD, Pedersen SK, Brown GS et al. Colorectal neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes Cancer 2011; 2 (8): 829–840. doi: 10.1177/1947601911431081.
33. Ellis BC, Molloy PL, Graham LD. CRNDE: a long non-coding RNA involved in cancer, neurobiology, and development. Front Genet 2012; 3 : 270. doi: 10.3389/fgene.2012.00270.
34. Zheng J, Li X, Wang P et al. CRNDE affects the malignant biological characteristics of human glioma stem cells by negatively regulating miR-186. Oncotarget 2015; 6 (28): 25339–25355. doi: 10.18632/oncotarget.4509.
35. Szafron LM, Balcerak A, Grzybowska EA et al. The putative oncogene, CRNDE, is a negative prognostic factor in ovarian cancer patients. Oncotarget 2015; 6 (41): 43897–43910. doi: 10.18632/oncotarget.6016.
36. Liu T, Zhang X, Yang Y et al. Increased expression of the long noncoding RNA CRNDE-h indicates a poor prognosis in colorectal cancer, and is positively correlated with IRX5 mRNA expression. Onco Targets Ther 2016; 9 : 1437–1448. doi: 10.2147/OTT.S98268.
37. Jiang H, Wang Y, Ai M et al. Long noncoding RNA CRNDE stabilized by hnRNPUL2 accelerates cell proliferation and migration in colorectal carcinoma via activating Ras/MAPK signaling pathways. Cell Death Dis 2017; 8 (6): e2862. doi: 10.1038/cddis.2017.258.
38. Van Grembergen O, Bizet M, de Bony EJ et al. Portraying breast cancers with long noncoding RNAs. Sci Adv 2016; 2 (9): e 1600220. doi: 10.1126/sciadv.1600220.
39. Bao H, Guo CG, Qiu PC et al. Long non-coding RNA Igf2as controls hepatocellular carcinoma progression through the ERK/MAPK signaling pathway. Oncol Lett 2017; 14 (3): 2831–2837. doi: 10.3892/ol.2017. 6492.
40. Loewer S, Cabili MN, Guttman M et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 2010; 42 (12): 1113–1117. doi: 10.1038/ng.710.
41. Wang Y, Xu Z, Jiang J et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 2013; 25 (1): 69–80. doi: 10.1016/j.devcel.2013.03.002.
42. Zhang A, Zhou N, Huang J et al. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res 2013; 23 (3): 340–350. doi: 10.1038/cr.2012.164.
43. Huang J, Zhang A, Ho TT et al. Linc-RoR promotes c-Myc expression through hnRNP I and AUF1. Nucleic Acids Res 2016; 44 (7): 3059–3069. doi: 10.1093/nar/gkv1353.
44. Eades G, Wolfson B, Zhang Y et al. LincRNA-RoR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6. Mol Cancer Res 2015; 13 (2): 330–338. doi: 10.1158/1541-7786.MCR-14-0251.
45. Peng WX, Huang JG, Yang L et al. Linc-RoR promotes MAPK/ERK signaling and confers estrogen-independent growth of breast cancer. Mol Cancer 2017; 16 (1): 161. doi: 10.1186/s12943-017-0727-3.
46. Zhao XD, Liu YB, Yu S. Long noncoding RNA AWPPH promotes hepatocellular carcinoma progression through YBX1 and serves as a prognostic biomarker. Biochim Biophys Acta 2017; 1863 (7): 1805–1816. doi: 10.1016/j.bbadis.2017.04.014.
47. Wang AQ, Meng MZ, Zhao XH et al. Long non-coding RNA ENST00462717 suppresses the proliferation, survival, and migration by inhibiting MDM2/MAPK pathway in glioma. Biochem Biophys Res Commun 2017; 485 (2): 513–521. doi: 10.1016/j.bbrc.2017.02.015.
48. Chen L, Sun L, Dong L et al. The role of long noncoding RNA-LET in cell proliferation and invasion of nasopharyngeal carcinoma and its mechanism. Onco Targets Ther 2017; 10 : 2769–2778. doi: 10.2147/OTT.S126907.
49. Ying L, Chen Q, Wang Y et al. Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst 2012; 8 (9): 2289–2294. doi: 10.1039/c2mb25070e.
50. Wu XS, Wang XA, Wu WG et al. MALAT1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the ERK/MAPK pathway. Cancer Biol Ther 2014; 15 (6): 806–814. doi: 10.4161/cbt.28584.
51. Gutschner T, Hämmerle M, Eißmann M et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 2013; 73 (3): 1180–1189. doi: 10.1158/0008-5472.CAN-12-2850.
52. Yiu GK, Kaunisto A, Chin YR et al. NFAT promotes carcinoma invasive migration through glypican-6. Biochemical J 2011; 440 (1): 157–166. doi: 10.1042/BJ20110 530.
53. Merabova N, Kaminski R, Krynska B et al. JCV agnoprotein-induced reduction in CXCL5/LIX secretion by oligodendrocytes is associated with activation of apoptotic signaling in neurons. J Cell Physiol 2012; 227 (8): 3119–3127. doi: 10.1002/jcp.23065.
54. Chen L, Feng PM, Zhu X et al. Long non-coding RNA Malat1 promotes neurite outgrowth through activation of ERK/MAPK signalling pathway in N2a cells. J Cell Mol Med 2016; 20 (11): 2102–2110. doi: 10.1111/jcmm.12904.
55. Li JK, Chen C, Liu JY et al. Long noncoding RNA MRCCAT1 promotes metastasis of clear cell renal cell carcinoma via inhibiting NPR3 and activating p38-MAPK signaling. Mol Cancer 2017; 16 (1): 111. doi: 10.1186/s12943-017-0681-0.
56. Zhang X, Zhou YL, Mehta KR et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 2003; 88 (11): 5119–5126. doi: 10.1210/jc.2003-030222.
57. Wang PJ, Ren ZQ, Sun PY. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem 2012; 113 (6): 1868–1874. doi: 10.1002/jcb.24055.
58. Zhang X, Gejman R, Mahta A et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 2010; 70 (6): 2350–2358. doi: 10.1158/0008-5472.CAN-09-3885.
59. Zhu J, Liu S, Ye F et al. Long Noncoding RNA MEG3 Interacts with p53 protein and regulates partial p53 target genes in hepatoma cells. Plos One 2015; 10 (10): e0139790. doi: 10.1371/journal.pone.0139790.
60. Sun M, Xia R, Jin F et al. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour biology 2014; 35 (2): 1065–1073. doi: 10.1007/s13277-013-1142-z.
61. Zhang CY, Yu MS, Li X et al. Overexpression of long non-coding RNA MEG3 suppresses breast cancer cell proliferation, invasion, and angiogenesis through AKT pathway. Tumour Biol 2017; 39 (6): 1010428317701311. doi: 10.1177/1010428317701311.
62. Chen XJ, Dong H, Liu S et al. Long noncoding RNA MHENCR promotes melanoma progression via regulating miR-425/489-mediated PI3K-Akt pathway. Am J Transl Res 2017; 9 (1): 90–102.
63. Patel Y, Shah N, Lee JS et al. A novel double-negative feedback loop between miR-489 and the HER2-SHP2-MAPK signaling axis regulates breast cancer cell proliferation and tumor growth. Oncotarget 2016; 7 (14): 18295–18308. doi: 10.18632/oncotarget.7577.
64. Chen S, Wang Y, Zhang JH et al. Long non-coding RNA PTENP1 inhibits proliferation and migration of breast cancer cells via AKT and MAPK signaling pathways. Oncol Lett 2017; 14 (4): 4659–4662. doi: 10.3892/ol.2017.6823.
65. Goedert L, Pereira CG, Roszik J et al. RMEL3, a novel BRAFV600E-associated long noncoding RNA, is required for MAPK and PI3K signaling in melanoma. Oncotarget 2016; 7 (24): 36711–36718. doi: 10.18632/oncotarget. 9164.
66. Zhang EB, Yin DD, Sun M et al. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis 2014; 5: e1243. doi: 10.1038/cddis.2014.201.
67. Yang C, Li X, Wang Y et al. Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells. Gene 2012; 496 (1): 8–16. doi: 10.1016/j.gene.2012.01.012.
68. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases (vol 75, pg 50, 2011). Microbiol Mol Biol Rev 2012; 76 (2): 496. doi: 10.1128/MMBR.00013-12.
69. Xu WH, Zhang JB, Dang Z et al. Long Non-coding RNA URHC regulates cell proliferation and apoptosis via ZAK through the ERK/MAPK signaling pathway in hepatocellular carcinoma. Int J Biol Sci 2014; 10 (7): 664–676. doi: 10.7150/ijbs.8232.
70. Taheri M, Omrani MD, Ghafouri-Fard S. Long non-coding RNAs expression in renal cell carcinoma. Journal of Biology and Today‘s World 2017; 6 (12): 240–247.
71. Faramarzi S, Dianatpour A, Ghafouri-Fard S. Discovering the role of long non-coding RNAs in regulation of steroid receptors signaling in cancer. Journal of Biology and Today‘s World 2017; 6 (12): 248–258.
72. Inamdar GS, Madhunapantula SV, Robertson GP. Targeting the MAPK pathway in melanoma: Why some approaches succeed and other fail. Biochem Pharmacol 2010; 80 (5): 624–637. doi: 10.1016/j.bcp.2010.04. 029.
73. Riddick G, Kotliarova S, Rodriguez V et al. A core regulatory circuit in glioblastoma stem cells links MAPK activation to a transcriptional program of neural stem cell identity. Sci Rep 2017; 7 : 43605. doi: 10.1038/srep43 605.
74. Dong YQ, Liang GJ, Yuan B et al. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol 2015; 36 (3): 1477–1486. doi: 10.1007/s13277-014-2631-4.
75. Aksamitiene E, Kiyatkin A, Kholodenko BN. Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochemical Soc Trans 2012; 40 (1): 139–146. doi: 10.1042/BST20110609.
76. Taylor AD, Micheel CM, Anderson IA et al. The path (way) less traveled: a pathway-oriented approach to providing information about precision cancer medicine on my cancer genome. Transl Oncol 2016; 9 (2): 163–165. doi: 10.1016/j.tranon.2016.03.001.
Štítky
Detská onkológia Chirurgia všeobecná Onkológia
Článok vyšiel v časopiseKlinická onkologie
Najčítanejšie tento týždeň
2018 Číslo 2- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- I „pouhé“ doporučení znamená velkou pomoc. Nasměrujte své pacienty pod křídla Dobrých andělů
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
-
Všetky články tohto čísla
- Anogenitální HPV infekce jako potenciální rizikový faktor orofaryngeálního karcinomu
- Úvod do problematiky léčby zhoubných nádorů ledvin
- Nové možnosti testování chemosenzitivity u nádorových onemocnění
- Kvalita života pacientů s častými nádory dutiny ústní léčených pooperační brachyterapií s vysokým dávkovým příkonem pro těsné nebo pozitivní okraje
- Změny v signální dráze MAPK/ERK u pacientů s histiocytózou Langerhansových buněk
- Súčasné trendy prežívania pacientov s nádorom testis – Národná populačná štúdia
- Kožné a podkožné metastázy adenokarcinómu ako dominujúca klinická manifestácia malignity neznámeho pôvodu – opis prípadu
- Informace z České onkologické společnosti
- Aktuality z odborného tisku
- Diagnostická, prognostická a prediktivní imunohistochemie při maligním melanomu kůže
- O dalších 5 let později
- Editorial
- Lidský papilomavirus – role v karcinogenezi cervixu a možnosti jeho detekce
- Dlouhé nekódující molekuly RNA jako regulátory mitogenem aktivované proteinkinázové dráhy (MAPK) v nádorech
- Klinická onkologie
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Kožné a podkožné metastázy adenokarcinómu ako dominujúca klinická manifestácia malignity neznámeho pôvodu – opis prípadu
- Změny v signální dráze MAPK/ERK u pacientů s histiocytózou Langerhansových buněk
- Dlouhé nekódující molekuly RNA jako regulátory mitogenem aktivované proteinkinázové dráhy (MAPK) v nádorech
- Lidský papilomavirus – role v karcinogenezi cervixu a možnosti jeho detekce
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy