#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria


The bacterial type VI secretion system (T6SS) is a contact-dependent protein secretion apparatus that is emerging as a major component of interbacterial competition in the environment. The bacterium Vibrio alginolyticus is a pathogen of marine animals and a causal agent of wound infections, otitis, and gastroenteritis in humans. In this study, we provide a comprehensive characterization of the environmental regulation, antibacterial activities, and secreted effector repertoires of the two T6SSs found in this pathogen. We also identify a subset of T6SS effectors that appear to be mobile and shared between marine bacteria that can interact with each other in aquatic environments. Our findings suggest that bacteria can incorporate T6SS effectors from competitors in the environment. These newly acquired toxins may be used to expand and diversify T6SS effector repertoires and enhance bacterial fitness.


Vyšlo v časopise: Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria. PLoS Pathog 11(8): e32767. doi:10.1371/journal.ppat.1005128
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005128

Souhrn

The bacterial type VI secretion system (T6SS) is a contact-dependent protein secretion apparatus that is emerging as a major component of interbacterial competition in the environment. The bacterium Vibrio alginolyticus is a pathogen of marine animals and a causal agent of wound infections, otitis, and gastroenteritis in humans. In this study, we provide a comprehensive characterization of the environmental regulation, antibacterial activities, and secreted effector repertoires of the two T6SSs found in this pathogen. We also identify a subset of T6SS effectors that appear to be mobile and shared between marine bacteria that can interact with each other in aquatic environments. Our findings suggest that bacteria can incorporate T6SS effectors from competitors in the environment. These newly acquired toxins may be used to expand and diversify T6SS effector repertoires and enhance bacterial fitness.


Zdroje

1. Ho BT, Dong TG, Mekalanos JJ (2014) A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15: 9–21. doi: 10.1016/j.chom.2013.11.008 24332978

2. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, et al. (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312: 1526–1530. 16763151

3. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104: 15508–15513. 17873062

4. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, et al. (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103: 1528–1533. 16432199

5. Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W, et al. (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475: 343–347. doi: 10.1038/nature10244 21776080

6. Russell AB, LeRoux M, Hathazi K, Agnello DM, Ishikawa T, et al. (2013) Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496: 508–512. doi: 10.1038/nature12074 23552891

7. Russell AB, Singh P, Brittnacher M, Bui NK, Hood RD, et al. (2012) A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe 11: 538–549. doi: 10.1016/j.chom.2012.04.007 22607806

8. Hood RD, Singh P, Hsu F, Guvener T, Carl MA, et al. (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7: 25–37. doi: 10.1016/j.chom.2009.12.007 20114026

9. Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483: 182–186. doi: 10.1038/nature10846 22367545

10. Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, et al. (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500: 350–353. doi: 10.1038/nature12453 23925114

11. Russell AB, Peterson SB, Mougous JD (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12: 137–148. doi: 10.1038/nrmicro3185 24384601

12. Koskiniemi S, Lamoureux JG, Nikolakakis KC, t'Kint de Roodenbeke C, Kaplan MD, et al. (2013) Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci U S A 110: 7032–7037. doi: 10.1073/pnas.1300627110 23572593

13. Ma LS, Hachani A, Lin JS, Filloux A, Lai EM (2014) Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16: 94–104. doi: 10.1016/j.chom.2014.06.002 24981331

14. Miyata ST, Unterweger D, Rudko SP, Pukatzki S (2013) Dual Expression Profile of Type VI Secretion System Immunity Genes Protects Pandemic Vibrio cholerae. PLoS pathogens 9: e1003752. doi: 10.1371/journal.ppat.1003752 24348240

15. Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L (2012) Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 7: 18. doi: 10.1186/1745-6150-7-18 22731697

16. Salomon D, Kinch LN, Trudgian DC, Guo X, Klimko JA, et al. (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A 111: 9271–9276. doi: 10.1073/pnas.1406110111 24927539

17. Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10: 104. doi: 10.1186/1471-2164-10-104 19284603

18. Ho BT, Basler M, Mekalanos JJ (2013) Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer. Science 342: 250–253. doi: 10.1126/science.1243745 24115441

19. Ishikawa T, Sabharwal D, Broms J, Milton DL, Sjostedt A, et al. (2012) Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect Immun 80: 575–584. doi: 10.1128/IAI.05510-11 22083711

20. Salomon D, Gonzalez H, Updegraff BL, Orth K (2013) Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS One 8: e61086. doi: 10.1371/journal.pone.0061086 23613791

21. Sana TG, Soscia C, Tonglet CM, Garvis S, Bleves S (2013) Divergent control of two type VI secretion systems by RpoN in Pseudomonas aeruginosa. PLoS One 8: e76030. doi: 10.1371/journal.pone.0076030 24204589

22. Newton A, Kendall M, Vugia DJ, Henao OL, Mahon BE (2012) Increasing rates of vibriosis in the United States, 1996–2010: review of surveillance data from 2 systems. Clin Infect Dis 54 Suppl 5: S391–395. doi: 10.1093/cid/cis243 22572659

23. Cervino JM, Hauff B, Haslun JA, Winiarski-Cervino K, Cavazos M, et al. (2012) Ulcerated yellow spot syndrome: implications of aquaculture-related pathogens associated with soft coral Sarcophyton ehrenbergi tissue lesions. Dis Aquat Organ 102: 137–148. doi: 10.3354/dao02541 23269388

24. Zhenyu X, Shaowen K, Chaoqun H, Zhixiong Z, Shifeng W, et al. (2013) First characterization of bacterial pathogen, Vibrio alginolyticus, for Porites andrewsi White syndrome in the South China Sea. PLoS One 8: e75425. doi: 10.1371/journal.pone.0075425 24086529

25. Sheng L, Gu D, Wang Q, Liu Q, Zhang Y (2012) Quorum sensing and alternative sigma factor RpoN regulate type VI secretion system I (T6SSVA1) in fish pathogen Vibrio alginolyticus. Arch Microbiol 194: 379–390. doi: 10.1007/s00203-011-0780-z 22173829

26. Sheng L, Lv Y, Liu Q, Wang Q, Zhang Y (2013) Connecting type VI secretion, quorum sensing, and c-di-GMP production in fish pathogen Vibrio alginolyticus through phosphatase PppA. Vet Microbiol 162: 652–662. doi: 10.1016/j.vetmic.2012.09.009 23021863

27. Salomon D, Klimko JA, Orth K (2014) H-NS regulates the Vibrio parahaemolyticus type VI secretion system 1. Microbiology 160: 1867–1873. doi: 10.1099/mic.0.080028-0 24987102

28. Williams LA, Larock PA (1985) Temporal Occurrence of Vibrio Species and Aeromonas hydrophila in Estuarine Sediments. Appl Environ Microbiol 50: 1490–1495. 16346948

29. Hildebrand A, Remmert M, Biegert A, Soding J (2009) Fast and accurate automatic structure prediction with HHpred. Proteins 77 Suppl 9: 128–132. doi: 10.1002/prot.22499 19626712

30. Burdette DL, Seemann J, Orth K (2009) Vibrio VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis. Mol Microbiol 73: 639–649. doi: 10.1111/j.1365-2958.2009.06798.x 19627496

31. Sreelatha A, Bennett TL, Zheng H, Jiang QX, Orth K, et al. (2013) Vibrio effector protein, VopQ, forms a lysosomal gated channel that disrupts host ion homeostasis and autophagic flux. Proc Natl Acad Sci U S A 110: 11559–11564. doi: 10.1073/pnas.1307032110 23798441

32. Sreelatha A, Bennett TL, Carpinone EM, O'Brien KM, Jordan KD, et al. (2014) Vibrio effector protein VopQ inhibits fusion of V-ATPase-containing membranes. Proc Natl Acad Sci U S A.

33. Kodama T, Yamazaki C, Park KS, Akeda Y, Iida T, et al. (2010) Transcription of Vibrio parahaemolyticus T3SS1 genes is regulated by a dual regulation system consisting of the ExsACDE regulatory cascade and H-NS. FEMS Microbiol Lett 311: 10–17. doi: 10.1111/j.1574-6968.2010.02066.x 20722736

34. Hurley CC, Quirke A, Reen FJ, Boyd EF (2006) Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates. BMC Genomics 7: 104. 16672049

35. Silverman JM, Agnello DM, Zheng H, Andrews BT, Li M, et al. (2013) Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell 51: 584–593. doi: 10.1016/j.molcel.2013.07.025 23954347

36. MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S (2010) The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A 107: 19520–19524. doi: 10.1073/pnas.1012931107 20974937

37. Fritsch MJ, Trunk K, Diniz JA, Guo M, Trost M, et al. (2013) Proteomic identification of novel secreted antibacterial toxins of the Serratia marcescens type VI secretion system. Mol Cell Proteomics 12: 2735–2749. doi: 10.1074/mcp.M113.030502 23842002

38. Borgeaud S, Metzger LC, Scrignari T, Blokesch M (2015) Bacterial evolution. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347: 63–67.

39. Hjerde E, Lorentzen MS, Holden MT, Seeger K, Paulsen S, et al. (2008) The genome sequence of the fish pathogen Aliivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay. BMC Genomics 9: 616. doi: 10.1186/1471-2164-9-616 19099551

40. Ferreira RM, de Oliveira AC, Moreira LM, Belasque J Jr., Gourbeyre E, et al. (2014) A TALE of Transposition: Tn3-Like Transposons Play a Major Role in the Spread of Pathogenicity Determinants of Xanthomonas citri and Other Xanthomonads. MBio 6.

41. Park KS, Ono T, Rokuda M, Jang MH, Okada K, et al. (2004) Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect Immun 72: 6659–6665. 15501799

42. Eagon RG (1962) Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. J Bacteriol 83: 736–737. 13888946

43. Bonemann G, Pietrosiuk A, Diemand A, Zentgraf H, Mogk A (2009) Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 28: 315–325. doi: 10.1038/emboj.2008.269 19131969

44. Bensadoun A, Weinstein D (1976) Assay of proteins in the presence of interfering materials. Anal Biochem 70: 241–250. 1259145

45. Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24: 2534–2536. doi: 10.1093/bioinformatics/btn323 18606607

46. Trudgian DC, Mirzaei H (2012) Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing. J Proteome Res 11: 6282–6290. doi: 10.1021/pr300694b 23088505

47. Trudgian DC, Thomas B, McGowan SJ, Kessler BM, Salek M, et al. (2010) CPFP: a central proteomics facilities pipeline. Bioinformatics 26: 1131–1132. doi: 10.1093/bioinformatics/btq081 20189941

48. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20: 1466–1467. 14976030

49. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, et al. (2004) Open mass spectrometry search algorithm. J Proteome Res 3: 958–964. 15473683

50. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4: 207–214. 17327847

51. Trudgian DC, Ridlova G, Fischer R, Mackeen MM, Ternette N, et al. (2011) Comparative evaluation of label-free SINQ normalized spectral index quantitation in the central proteomics facilities pipeline. Proteomics 11: 2790–2797. doi: 10.1002/pmic.201000800 21656681

52. Pavelka N, Fournier ML, Swanson SK, Pelizzola M, Ricciardi-Castagnoli P, et al. (2008) Statistical similarities between transcriptomics and quantitative shotgun proteomics data. Mol Cell Proteomics 7: 631–644. 18029349

53. Pavelka N, Pelizzola M, Vizzardelli C, Capozzoli M, Splendiani A, et al. (2004) A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinformatics 5: 203. 15606915

54. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402. 9254694

55. Frickey T, Lupas A (2004) CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20: 3702–3704. 15284097

56. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, et al. (2015) CDD: NCBI's conserved domain database. Nucleic Acids Res 43: D222–226. doi: 10.1093/nar/gku1221 25414356

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#