#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Double-Edge Sword of Sustained ROCK Activation in Prion Diseases through Neuritogenesis Defects and Prion Accumulation


Transmissible Spongiform Encephalopathies (TSEs), commonly named prion diseases, are caused by deposition in the brain of pathogenic prions PrPSc that trigger massive neuronal death. Because of our poor understanding of the mechanisms sustaining prion-induced neurodegeneration, there is to date no effective medicine to combat TSEs. The current study demonstrates that ROCK kinases are overactivated in prion-infected cells and contribute to prion pathogenesis at two levels. First, PrPSc-induced ROCK overactivation affects neuronal polarity with synapse disconnection, axon/dendrite degradation, and disturbs neuronal functions. Second, ROCK overactivity amplifies the production of pathogenic prions. The pharmacological inhibition of ROCK protects diseased neurons from PrPSc toxicity by preserving neuronal architecture and functions and lowering PrPSc level. Inhibition of ROCK in prion-infected mice reduces brain PrPSc levels, improves motor activity and extends lifespan. This study opens up new avenues to design ROCK-based therapeutic strategies to fight TSEs.


Vyšlo v časopise: Double-Edge Sword of Sustained ROCK Activation in Prion Diseases through Neuritogenesis Defects and Prion Accumulation. PLoS Pathog 11(8): e32767. doi:10.1371/journal.ppat.1005073
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005073

Souhrn

Transmissible Spongiform Encephalopathies (TSEs), commonly named prion diseases, are caused by deposition in the brain of pathogenic prions PrPSc that trigger massive neuronal death. Because of our poor understanding of the mechanisms sustaining prion-induced neurodegeneration, there is to date no effective medicine to combat TSEs. The current study demonstrates that ROCK kinases are overactivated in prion-infected cells and contribute to prion pathogenesis at two levels. First, PrPSc-induced ROCK overactivation affects neuronal polarity with synapse disconnection, axon/dendrite degradation, and disturbs neuronal functions. Second, ROCK overactivity amplifies the production of pathogenic prions. The pharmacological inhibition of ROCK protects diseased neurons from PrPSc toxicity by preserving neuronal architecture and functions and lowering PrPSc level. Inhibition of ROCK in prion-infected mice reduces brain PrPSc levels, improves motor activity and extends lifespan. This study opens up new avenues to design ROCK-based therapeutic strategies to fight TSEs.


Zdroje

1. Ferri A, Sanes JR, Coleman MP, Cunningham JM, Kato AC (2003) Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease. Curr Biol 13: 669–673. 12699624

2. Gillingwater TH, Ingham CA, Coleman MP, Ribchester RR (2003) Ultrastructural correlates of synapse withdrawal at axotomized neuromuscular junctions in mutant and transgenic mice expressing the Wld gene. J Anat 203: 265–276. 14529044

3. Sievers C, Platt N, Perry VH, Coleman MP, Conforti L (2003) Neurites undergoing Wallerian degeneration show an apoptotic-like process with Annexin V positive staining and loss of mitochondrial membrane potential. Neurosci Res 46: 161–169. 12767479

4. Brose N, O'Connor V, Skehel P (2010) Synaptopathy: dysfunction of synaptic function? Biochem Soc Trans 38: 443–444. doi: 10.1042/BST0380443 20298199

5. Aguzzi A, Baumann F, Bremer J (2008) The prion's elusive reason for being. Annu Rev Neurosci 31: 439–477. doi: 10.1146/annurev.neuro.31.060407.125620 18558863

6. Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, et al. (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379: 339–343. 8552188

7. Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S, et al. (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302: 871–874. 14593181

8. Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, et al. (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308: 1435–1439. 15933194

9. Harris DA, True HL (2006) New insights into prion structure and toxicity. Neuron 50: 353–357. 16675391

10. Winklhofer KF, Tatzelt J, Haass C (2008) The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J 27: 336–349. doi: 10.1038/sj.emboj.7601930 18216876

11. Rambold AS, Muller V, Ron U, Ben-Tal N, Winklhofer KF, et al. (2008) Stress-protective signalling of prion protein is corrupted by scrapie prions. EMBO J 27: 1974–1984. Epub 2008 Jun 1919. doi: 10.1038/emboj.2008.122 18566584

12. Schneider B, Pietri M, Pradines E, Loubet D, Launay JM, et al. (2011) Understanding the neurospecificity of Prion protein signaling. Front Biosci 16: 169–186.

13. Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, et al. (2008) Physiology of the prion protein. Physiol Rev 88: 673–728. doi: 10.1152/physrev.00007.2007 18391177

14. Alleaume-Butaux A, Dakowski C, Pietri M, Mouillet-Richard S, Launay JM, et al. (2013) Cellular prion protein is required for neuritogenesis: fine-tuning of multiple singaling pathways involved in focal adhesions and actin cytoskeleton dynamics. Cell Health and Cytoskeleton 5: 1–12.

15. Loubet D, Dakowski C, Pietri M, Pradines E, Bernard S, et al. (2012) Neuritogenesis: the prion protein controls beta1 integrin signaling activity. Faseb J 26: 678–690. doi: 10.1096/fj.11-185579 22038049

16. Graner E, Mercadante AF, Zanata SM, Forlenza OV, Cabral AL, et al. (2000) Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res 76: 85–92. 10719218

17. Santuccione A, Sytnyk V, Leshchyns'ka I, Schachner M (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169: 341–354. 15851519

18. Lopes MH, Hajj GN, Muras AG, Mancini GL, Castro RM, et al. (2005) Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J Neurosci 25: 11330–11339. 16339028

19. Hajj GN, Santos TG, Cook ZS, Martins VR (2009) Developmental expression of prion protein and its ligands stress-inducible protein 1 and vitronectin. J Comp Neurol 517: 371–384. doi: 10.1002/cne.22157 19760599

20. Beraldo FH, Arantes CP, Santos TG, Queiroz NG, Young K, et al. (2010) Role of alpha7 nicotinic acetylcholine receptor in calcium signaling induced by prion protein interaction with stress-inducible protein 1. J Biol Chem 285: 36542–36550. doi: 10.1074/jbc.M110.157263 20837487

21. Beraldo FH, Arantes CP, Santos TG, Machado CF, Roffe M, et al. (2011) Metabotropic glutamate receptors transduce signals for neurite outgrowth after binding of the prion protein to laminin gamma1 chain. Faseb J 25: 265–279. doi: 10.1096/fj.10-161653 20876210

22. Mouillet-Richard S, Mutel V, Loric S, Tournois C, Launay JM, et al. (2000) Regulation by neurotransmitter receptors of serotonergic or catecholaminergic neuronal cell differentiation. J Biol Chem 275: 9186–9192. 10734054

23. Mouillet-Richard S, Nishida N, Pradines E, Laude H, Schneider B, et al. (2008) Prions impair bioaminergic functions through serotonin- or catecholamine-derived neurotoxins in neuronal cells. J Biol Chem 283: 23782–23790. doi: 10.1074/jbc.M802433200 18617522

24. Pietri M, Dakowski C, Hannaoui S, Alleaume-Butaux A, Hernandez-Rapp J, et al. (2013) PDK1 decreases TACE-mediated alpha-secretase activity and promotes disease progression in prion and Alzheimer's diseases. Nat Med 19: 1124–1131. doi: 10.1038/nm.3302 23955714

25. Paquet S, Langevin C, Chapuis J, Jackson GS, Laude H, et al. (2007) Efficient dissemination of prions through preferential transmission to nearby cells. J Gen Virol 88: 706–713. 17251590

26. Bernard O (2007) Lim kinases, regulators of actin dynamics. Int J Biochem Cell Biol 39: 1071–1076. 17188549

27. Endo M, Ohashi K, Sasaki Y, Goshima Y, Niwa R, et al. (2003) Control of growth cone motility and morphology by LIM kinase and Slingshot via phosphorylation and dephosphorylation of cofilin. J Neurosci 23: 2527–2537. 12684437

28. Ng J, Luo L (2004) Rho GTPases regulate axon growth through convergent and divergent signaling pathways. Neuron 44: 779–793. 15572110

29. Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4: 446–456. 12778124

30. Mueller BK, Mack H, Teusch N (2005) Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4: 387–398. 15864268

31. Olson MF (2008) Applications for ROCK kinase inhibition. Curr Opin Cell Biol 20: 242–248. doi: 10.1016/j.ceb.2008.01.002 18282695

32. Stankiewicz TR, Linseman DA (2014) Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 8: 314. doi: 10.3389/fncel.2014.00314 25339865

33. Launay JM, Schneider B, Loric S, Da Prada M, Kellermann O (2006) Serotonin transport and serotonin transporter-mediated antidepressant recognition are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells. FASEB J 20: 1843–1854. 16940156

34. Peyrin JM, Deleglise B, Saias L, Vignes M, Gougis P, et al. (2011) Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers. Lab Chip 11: 3663–3673. doi: 10.1039/c1lc20014c 21922081

35. Deleglise B, Lassus B, Soubeyre V, Alleaume-Butaux A, Hjorth JJ, et al. (2013) Synapto-protective drugs evaluation in reconstructed neuronal network. PLoS One 8: e71103. doi: 10.1371/journal.pone.0071103 23976987

36. Deleglise B, Magnifico S, Duplus E, Vaur P, Soubeyre V, et al. (2014) ss-amyloid induces a dying-back process and remote trans-synaptic alterations in a microfluidic-based reconstructed neuronal network. Acta Neuropathol Commun 2: 145. doi: 10.1186/s40478-014-0145-3 25253021

37. Cronier S, Laude H, Peyrin JM (2004) Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death. Proc Natl Acad Sci U S A 101: 12271–12276. 15302929

38. Cronier S, Beringue V, Bellon A, Peyrin JM, Laude H (2007) Prion strain- and species-dependent effects of antiprion molecules in primary neuronal cultures. J Virol 81: 13794–13800. 17913812

39. Westergard L, Turnbaugh JA, Harris DA (2011) A naturally occurring, C-terminal fragment of the prion protein delays disease and acts as a dominant negative inhibitor of PrPSc formation. J Biol Chem 286: 44234–44242. doi: 10.1074/jbc.M111.286195 22025612

40. Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, et al. (2000) Signal transduction through prion protein. Science 289: 1925–1928. 10988071

41. Calleja V, Laguerre M, de Las Heras-Martinez G, Parker PJ, Requejo-Isidro J, et al. (2014) Acute regulation of PDK1 by a complex interplay of molecular switches. Biochem Soc Trans 42: 1435–1440. doi: 10.1042/BST20140222 25233428

42. Gao X, Harris TK (2006) Role of the PH domain in regulating in vitro autophosphorylation events required for reconstitution of PDK1 catalytic activity. Bioorg Chem 34: 200–223. 16780920

43. Li Y, Yang KJ, Park J (2010) Multiple implications of 3-phosphoinositide-dependent protein kinase 1 in human cancer. World J Biol Chem 1: 239–247. doi: 10.4331/wjbc.v1.i8.239 21537480

44. Vidal C, Herzog C, Haeberle AM, Bombarde C, Miquel MC, et al. (2009) Early dysfunction of central 5-HT system in a murine model of bovine spongiform encephalopathy. Neuroscience 160: 731–743. doi: 10.1016/j.neuroscience.2009.02.072 19285121

45. Da Silva JS, Medina M, Zuliani C, Di Nardo A, Witke W, et al. (2003) RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J Cell Biol 162: 1267–1279. 14517206

46. Bramham CR (2007) Control of synaptic consolidation in the dentate gyrus: mechanisms, functions, and therapeutic implications. Prog Brain Res 163: 453–471. 17765733

47. Kim S, Coulombe PA (2010) Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat Rev Mol Cell Biol 11: 75–81. doi: 10.1038/nrm2818 20027187

48. Jung H, Yoon BC, Holt CE (2012) Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 13: 308–324. doi: 10.1038/nrn3210 22498899

49. Howe JG, Hershey JW (1984) Translational initiation factor and ribosome association with the cytoskeletal framework fraction from HeLa cells. Cell 37: 85–93. 6722878

50. Heuijerjans JH, Pieper FR, Ramaekers FC, Timmermans LJ, Kuijpers H, et al. (1989) Association of mRNA and eIF-2 alpha with the cytoskeleton in cells lacking vimentin. Exp Cell Res 181: 317–330. 2466674

51. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O (2010) miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science 329: 1537–1541. doi: 10.1126/science.1193692 20847275

52. Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, et al. (2012) Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration. Nature 485: 507–511. doi: 10.1038/nature11058 22622579

53. Gibson CL, Srivastava K, Sprigg N, Bath PM, Bayraktutan U (2014) Inhibition of Rho-kinase protects cerebral barrier from ischaemia-evoked injury through modulations of endothelial cell oxidative stress and tight junctions. J Neurochem 129: 816–826. doi: 10.1111/jnc.12681 24528233

54. Guo R, Liu B, Zhou S, Zhang B, Xu Y (2013) The protective effect of fasudil on the structure and function of cardiac mitochondria from rats with type 2 diabetes induced by streptozotocin with a high-fat diet is mediated by the attenuation of oxidative stress. Biomed Res Int 2013: 430791. doi: 10.1155/2013/430791 23762845

55. Zhou Y, Su Y, Li B, Liu F, Ryder JW, et al. (2003) Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science 302: 1215–1217. 14615541

56. Rodriguez-Perez AI, Dominguez-Meijide A, Lanciego JL, Guerra MJ, Labandeira-Garcia JL (2013) Inhibition of Rho kinase mediates the neuroprotective effects of estrogen in the MPTP model of Parkinson's disease. Neurobiol Dis 58: 209–219. doi: 10.1016/j.nbd.2013.06.004 23774254

57. Labandeira-Garcia JL, Rodriguez-Perez AI, Villar-Cheda B, Borrajo A, Dominguez-Meijide A, et al. (2014) Rho Kinase and Dopaminergic Degeneration: A Promising Therapeutic Target for Parkinson's Disease. Neuroscientist.

58. Herskowitz JH, Feng Y, Mattheyses AL, Hales CM, Higginbotham LA, et al. (2013) Pharmacologic inhibition of ROCK2 suppresses amyloid-beta production in an Alzheimer's disease mouse model. J Neurosci 33: 19086–19098. doi: 10.1523/JNEUROSCI.2508-13.2013 24305806

59. Pietri M, Caprini A, Mouillet-Richard S, Pradines E, Ermonval M, et al. (2006) Overstimulation of PrPC signaling pathways by prion peptide 106–126 causes oxidative injury of bioaminergic neuronal cells. J Biol Chem 281: 28470–28479. 16864581

60. Lenter M, Uhlig H, Hamann A, Jeno P, Imhof B, et al. (1993) A monoclonal antibody against an activation epitope on mouse integrin chain beta 1 blocks adhesion of lymphocytes to the endothelial integrin alpha 6 beta 1. Proc Natl Acad Sci U S A 90: 9051–9055. 7692444

61. Kempster S, Bate C, Williams A (2007) Simvastatin treatment prolongs the survival of scrapie-infected mice. Neuroreport 18: 479–482. 17496807

62. McCabe A, Dolled-Filhart M, Camp RL, Rimm DL (2005) Automated quantitative analysis (AQUA) of in situ protein expression, antibody concentration, and prognosis. J Natl Cancer Inst 97: 1808–1815. 16368942

63. Bate C, Langeveld J, Williams A (2004) Manipulation of PrPres production in scrapie-infected neuroblastoma cells. J Neurosci Methods 138: 217–223. 15325130

64. Hofler A, Nichols T, Grant S, Lingardo L, Esposito EA, et al. (2011) Study of the PDK1/AKT signaling pathway using selective PDK1 inhibitors, HCS, and enhanced biochemical assays. Anal Biochem 414: 179–186. doi: 10.1016/j.ab.2011.03.013 21402045

65. Moore DD, Sefton BM (1997) Analysis of protein phosphorylation. Current Protocols in Molecular Biology (J Wiley & Sons, Inc).

66. Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, et al. (1997) 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7: 776–789. 9368760

67. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, et al. (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. Embo J 15: 6541–6551. 8978681

68. Yadavalli R, Guttmann RP, Seward T, Centers AP, Williamson RA, et al. (2004) Calpain-dependent endoproteolytic cleavage of PrPSc modulates scrapie prion replication. J Biol Chem 279: 21948–56. 15026410

69. Mays CE, Kim C, Haldiman T, van der Merwe J, Lau A, et al. (2014) Prion disease tempo determined by host-dependent substrate reduction. J Clin Invest 124: 847–58. doi: 10.1172/JCI72241 24430187

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#