Antibodies Trap Tissue Migrating Helminth Larvae and Prevent Tissue Damage by Driving IL-4Rα-Independent Alternative Differentiation of Macrophages


Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM) form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure. Alternative activation of macrophages during helminth infection has been linked to signaling through the IL-4 receptor alpha chain (IL-4Rα), but the potential effects of antibodies on macrophage differentiation have not been explored. We demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae and prevent tissue necrosis following challenge infection with the natural murine parasite Heligmosomoides polygyrus bakeri (Hp). Mice lacking antibodies (JH−/−) or activating Fc receptors (FcRγ−/−) harbored highly motile larvae, developed extensive tissue damage and accumulated less Arginase-1 expressing macrophages around the larvae. Moreover, Hp-specific antibodies induced FcRγ- and complement-dependent adherence of macrophages to larvae in vitro, resulting in complete larval immobilization. Antibodies together with helminth larvae reprogrammed macrophages to express wound-healing associated genes, including Arginase-1, and the Arginase-1 product L-ornithine directly impaired larval motility. Antibody-induced expression of Arginase-1 in vitro and in vivo occurred independently of IL-4Rα signaling. In summary, we present a novel IL-4Rα-independent mechanism of alternative macrophage activation that is antibody-dependent and which both mediates anti-helminth immunity and prevents tissue disruption caused by migrating larvae.


Vyšlo v časopise: Antibodies Trap Tissue Migrating Helminth Larvae and Prevent Tissue Damage by Driving IL-4Rα-Independent Alternative Differentiation of Macrophages. PLoS Pathog 9(11): e32767. doi:10.1371/journal.ppat.1003771
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003771

Souhrn

Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM) form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure. Alternative activation of macrophages during helminth infection has been linked to signaling through the IL-4 receptor alpha chain (IL-4Rα), but the potential effects of antibodies on macrophage differentiation have not been explored. We demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae and prevent tissue necrosis following challenge infection with the natural murine parasite Heligmosomoides polygyrus bakeri (Hp). Mice lacking antibodies (JH−/−) or activating Fc receptors (FcRγ−/−) harbored highly motile larvae, developed extensive tissue damage and accumulated less Arginase-1 expressing macrophages around the larvae. Moreover, Hp-specific antibodies induced FcRγ- and complement-dependent adherence of macrophages to larvae in vitro, resulting in complete larval immobilization. Antibodies together with helminth larvae reprogrammed macrophages to express wound-healing associated genes, including Arginase-1, and the Arginase-1 product L-ornithine directly impaired larval motility. Antibody-induced expression of Arginase-1 in vitro and in vivo occurred independently of IL-4Rα signaling. In summary, we present a novel IL-4Rα-independent mechanism of alternative macrophage activation that is antibody-dependent and which both mediates anti-helminth immunity and prevents tissue disruption caused by migrating larvae.


Zdroje

1. BeaverPC (1975) Biology of soil-transmitted helminths: the massive infection. Health Lab Sci 12: 116–125.

2. CromptonDW (1988) The prevalence of Ascariasis. Parasitol Today (Regul Ed) 4: 162–169.

3. StephensonLS, HollandCV, CooperES (2000) The public health significance of Trichuris trichiura. Parasitology 121 Suppl: S73–95.

4. CooperPJ, ChicoME, LosonskyG, SandovalC, EspinelI, et al. (2000) Albendazole treatment of children with ascariasis enhances the vibriocidal antibody response to the live attenuated oral cholera vaccine CVD 103-HgR. J Infect Dis 182: 1199–1206 doi:10.1086/315837

5. BethonyJ, BrookerS, AlbonicoM, GeigerSM, LoukasA, et al. (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367: 1521–1532 doi:10.1016/S0140-6736(06)68653-4

6. AlbonicoM, AllenH, ChitsuloL, EngelsD, GabrielliA-F, et al. (2008) Controlling soil-transmitted helminthiasis in pre-school-age children through preventive chemotherapy. PLoS Negl Trop Dis 2: e126 doi:10.1371/journal.pntd.0000126

7. AppletonCC, MosalaTI, LevinJ, OlsenA (2009) Geohelminth infection and re-infection after chemotherapy among slum-dwelling children in Durban, South Africa. Ann Trop Med Parasitol 103: 249–261 doi:10.1179/136485909X398212

8. SangsterNC (1999) Anthelmintic resistance: past, present and future. Int J Parasitol 29: 115–124 discussion 137–138.

9. GeertsS, GryseelsB (2000) Drug resistance in human helminths: current situation and lessons from livestock. Clin Microbiol Rev 13: 207–222.

10. GeertsS, GryseelsB (2001) Anthelmintic resistance in human helminths: a review. Trop Med Int Health 6: 915–921.

11. GalvaniAP (2005) Age-dependent epidemiological patterns and strain diversity in helminth parasites. J Parasitol 91: 24–30 doi:10.1645/GE-191R1

12. Taylor-RobinsonDC, MaayanN, Soares-WeiserK, DoneganS, GarnerP (2012) Deworming drugs for soil-transmitted intestinal worms in children: effects on nutritional indicators, haemoglobin and school performance. Cochrane Database Syst Rev 11: CD000371 doi:10.1002/14651858.CD000371.pub5

13. KhieuV, SchärF, MartiH, SayasoneS, DuongS, et al. (2013) Diagnosis, treatment and risk factors of Strongyloides stercoralis in schoolchildren in Cambodia. PLoS Negl Trop Dis 7: e2035 doi:10.1371/journal.pntd.0002035

14. WynnTA, ChawlaA, PollardJW (2013) Macrophage biology in development, homeostasis and disease. Nature 496: 445–455 doi:10.1038/nature12034

15. AderemA, UnderhillDM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17: 593–623 doi:10.1146/annurev.immunol.17.1.593

16. AnthonyRM, UrbanJFJr, AlemF, HamedHA, RozoCT, et al. (2006) Memory T(H)2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat Med 12: 955–960 doi:10.1038/nm1451

17. GordonS (2003) Alternative activation of macrophages. Nat Rev Immunol 3: 23–35 doi:10.1038/nri978

18. CamberisM, Le GrosG, UrbanJJr (2003) Animal model of Nippostrongylus brasiliensis and Heligmosomoides polygyrus. Curr Protoc Immunol Chapter 19: Unit 19.12 doi:10.1002/0471142735.im1912s55

19. RobinsonM, WahidF, BehnkeJM, GilbertFS (1989) Immunological relationships during primary infection with Heligmosomoides polygyrus (Nematospiroides dubius): dose-dependent expulsion of adult worms. Parasitology 98(Pt 1): 115–124.

20. UrbanJFJr, KatonaIM, FinkelmanFD (1991) Heligmosomoides polygyrus: CD4+ but not CD8+ T cells regulate the IgE response and protective immunity in mice. Exp Parasitol 73: 500–511.

21. UrbanJFJr, KatonaIM, PaulWE, FinkelmanFD (1991) Interleukin 4 is important in protective immunity to a gastrointestinal nematode infection in mice. Proc Natl Acad Sci USA 88: 5513–5517.

22. AnthonyRM, RutitzkyLI, UrbanJFJr, StadeckerMJ, GauseWC (2007) Protective immune mechanisms in helminth infection. Nat Rev Immunol 7: 975–987 doi:10.1038/nri2199

23. ZimmermannN, KingNE, LaporteJ, YangM, MishraA, et al. (2003) Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest 111: 1863–1874 doi:10.1172/JCI17912

24. HesseM, ModolellM, La FlammeAC, SchitoM, FuentesJM, et al. (2001) Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol 167: 6533–6544.

25. BarronL, SmithAM, El KasmiKC, QuallsJE, HuangX, et al. (2013) Role of arginase 1 from myeloid cells in th2-dominated lung inflammation. PLoS ONE 8: e61961 doi:10.1371/journal.pone.0061961

26. ZhaoA, UrbanJFJr, AnthonyRM, SunR, StiltzJ, et al. (2008) Th2 cytokine-induced alterations in intestinal smooth muscle function depend on alternatively activated macrophages. Gastroenterology 135: 217–225.e1 doi:10.1053/j.gastro.2008.03.077

27. YangZ, GrinchukV, UrbanJFJr, BohlJ, SunR, et al. (2013) Macrophages as IL-25/IL-33-Responsive Cells Play an Important Role in the Induction of Type 2 Immunity. PLoS ONE 8: e59441 doi:10.1371/journal.pone.0059441

28. WojciechowskiW, HarrisDP, SpragueF, MousseauB, MakrisM, et al. (2009) Cytokine-producing effector B cells regulate type 2 immunity to H. polygyrus. Immunity 30: 421–433 doi:10.1016/j.immuni.2009.01.006

29. LiuQ, KreiderT, BowdridgeS, LiuZ, SongY, et al. (2010) B cells have distinct roles in host protection against different nematode parasites. J Immunol 184: 5213–5223 doi:10.4049/jimmunol.0902879

30. McCoyKD, StoelM, StettlerR, MerkyP, FinkK, et al. (2008) Polyclonal and specific antibodies mediate protective immunity against enteric helminth infection. Cell Host Microbe 4: 362–373 doi:10.1016/j.chom.2008.08.014

31. KhouryPB, StrombergBE, SoulsbyEJ (1977) Immune mechanisms to Ascaris suum in inbred guinea-pigs. I. Passive transfer of immunity by cells or serum. Immunology 32: 405–411.

32. BehnkeJM, ParishHA (1979) Expulsion of Nematospiroides dubius from the intestine of mice treated with immune serum. Parasite Immunol 1: 13–26.

33. MurrellKD (1981) Protective role of immunoglobulin G in immunity to Strongyloides ratti. J Parasitol 67: 167–173.

34. WoolhouseME, TaylorP, MatanhireD, ChandiwanaSK (1991) Acquired immunity and epidemiology of Schistosoma haematobium. Nature 351: 757–759 doi:10.1038/351757a0

35. HagelI, LynchNR, Di PriscoMC, RojasE, PérezM, et al. (1993) Ascaris reinfection of slum children: relation with the IgE response. Clin Exp Immunol 94: 80–83.

36. AtmadjaAK, AtkinsonR, SartonoE, PartonoF, YazdanbakhshM, et al. (1995) Differential decline in filaria-specific IgG1, IgG4, and IgE antibodies in Brugia malayi-infected patients after diethylcarbamazine chemotherapy. J Infect Dis 172: 1567–1572.

37. BlackwellNM, ElseKJ (2001) B cells and antibodies are required for resistance to the parasitic gastrointestinal nematode Trichuris muris. Infect Immun 69: 3860–3868 doi:10.1128/IAI.69.6.3860-3868.2001

38. GurishMF, BrycePJ, TaoH, KisselgofAB, ThorntonEM, et al. (2004) IgE enhances parasite clearance and regulates mast cell responses in mice infected with Trichinella spiralis. J Immunol 172: 1139–1145.

39. ChenJ, TrounstineM, AltFW, YoungF, KuraharaC, et al. (1993) Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int Immunol 5: 647–656.

40. HerbstT, EsserJ, PratiM, KulaginM, StettlerR, et al. (2012) Antibodies and IL-3 support helminth-induced basophil expansion. Proc Natl Acad Sci USA 109: 14954–14959 doi:10.1073/pnas.1117584109

41. Sanchez-MadridF, NagyJA, RobbinsE, SimonP, SpringerTA (1983) A human leukocyte differentiation antigen family with distinct alpha-subunits and a common beta-subunit: the lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1), and the p150,95 molecule. J Exp Med 158: 1785–1803.

42. Díaz de StåhlT, DahlstromJ, CarrollMC, HeymanB (2003) A role for complement in feedback enhancement of antibody responses by IgG3. J Exp Med 197: 1183–1190 doi:10.1084/jem.20022232

43. HazenbosWL, HeijnenIA, MeyerD, HofhuisFM, Renardel de LavaletteCR, et al. (1998) Murine IgG1 complexes trigger immune effector functions predominantly via Fc gamma RIII (CD16). J Immunol 161: 3026–3032.

44. DingJW, ZhouT, ZengH, MaL, VerbeekJS, et al. (2008) Hyperacute rejection by anti-Gal IgG1, IgG2a, and IgG2b is dependent on complement and Fc-gamma receptors. J Immunol 180: 261–268.

45. El KasmiKC, QuallsJE, PesceJT, SmithAM, ThompsonRW, et al. (2008) Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 9: 1399–1406 doi:10.1038/ni.1671

46. PesceJT, RamalingamTR, Mentink-KaneMM, WilsonMS, El KasmiKC, et al. (2009) Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog 5: e1000371 doi:10.1371/journal.ppat.1000371

47. KisanukiYY, HammerRE, MiyazakiJ, WilliamsSC, RichardsonJA, et al. (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230: 230–242 doi:10.1006/dbio.2000.0106

48. ConstienR, FordeA, LiliensiekB, GröneHJ, NawrothP, et al. (2001) Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis 30: 36–44.

49. MunderM, EichmannK, ModolellM (1998) Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 160: 5347–5354.

50. HerbertDR, OrekovT, PerkinsC, RothenbergME, FinkelmanFD (2008) IL-4R alpha expression by bone marrow-derived cells is necessary and sufficient for host protection against acute schistosomiasis. J Immunol 180: 4948–4955.

51. NyindoM, KariukiTM, MolaPW, FarahIO, ElsonL, et al. (1999) Role of adult worm antigen-specific immunoglobulin E in acquired immunity to Schistosoma mansoni infection in baboons. Infect Immun 67: 636–642.

52. SchmidtRE, GessnerJE (2005) Fc receptors and their interaction with complement in autoimmunity. Immunol Lett 100: 56–67 doi:10.1016/j.imlet.2005.06.022

53. HarrisNL, PleassR, BehnkeJM (2013) Understanding the role of antibodies in murine infections with Heligmosomoides (polygyrus) bakeri: 35 years ago, now and 35 years ahead. Parasite Immunol doi:10.1111/pim.12057

54. MarslandBJ, KurrerM, ReissmannR, HarrisNL, KopfM (2008) Nippostrongylus brasiliensis infection leads to the development of emphysema associated with the induction of alternatively activated macrophages. Eur J Immunol 38: 479–488 doi:10.1002/eji.200737827

55. ChenF, LiuZ, WuW, RozoC, BowdridgeS, et al. (2012) An essential role for T(H)2-type responses in limiting acute tissue damage during experimental helminth infection. Nature Medicine 18: 260–6 Available: http://www.ncbi.nlm.nih.gov/pubmed/22245779. Accessed 19 January 2012.

56. MurrayPJ, WynnTA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11: 723–737 doi:10.1038/nri3073

57. OzakiM, GotohT, NagasakiA, MiyanakaK, TakeyaM, et al. (1999) Expression of arginase II and related enzymes in the rat small intestine and kidney. J Biochem 125: 586–593.

58. JenkinsSJ, RuckerlD, CookPC, JonesLH, FinkelmanFD, et al. (2011) Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332: 1284–1288 doi:10.1126/science.1204351

59. IndikZK, ParkJG, HunterS, SchreiberAD (1995) The molecular dissection of Fc gamma receptor mediated phagocytosis. Blood 86: 4389–4399.

60. EnnaciriJ, GirardD (2009) IL-4R(alpha), a new member that associates with Syk kinase: implication in IL-4-induced human neutrophil functions. J Immunol 183: 5261–5269 doi:10.4049/jimmunol.0900109

61. WeisserSB, McLarrenKW, VoglmaierN, van Netten-ThomasCJ, AntovA, et al. (2011) Alternative activation of macrophages by IL-4 requires SHIP degradation. Eur J Immunol 41: 1742–1753 doi:10.1002/eji.201041105

62. EdwardsJP, ZhangX, FrauwirthKA, MosserDM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80: 1298–1307 doi:10.1189/jlb.0406249

63. YanC, ZhuM, StaigerJ, JohnsonPF, GaoH (2012) C5a-regulated CCAAT/enhancer-binding proteins β and δ are essential in Fcγ receptor-mediated inflammatory cytokine and chemokine production in macrophages. J Biol Chem 287: 3217–3230 doi:10.1074/jbc.M111.280834

64. RutschmanR, LangR, HesseM, IhleJN, WynnTA, et al. (2001) Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J Immunol 166: 2173–2177.

65. QuallsJE, NealeG, SmithAM, KooM-S, DeFreitasAA, et al. (2010) Arginine usage in mycobacteria-infected macrophages depends on autocrine-paracrine cytokine signaling. Sci Signal 3: ra62 doi:10.1126/scisignal.2000955

66. CsókaB, SelmeczyZ, KoscsóB, NémethZH, PacherP, et al. (2012) Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J 26: 376–386 doi:10.1096/fj.11-190934

67. TakaiT, LiM, SylvestreD, ClynesR, RavetchJV (1994) FcR gamma chain deletion results in pleiotrophic effector cell defects. Cell 76: 519–529.

68. WesselsMR, ButkoP, MaM, WarrenHB, LageAL, et al. (1995) Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity. Proc Natl Acad Sci USA 92: 11490–11494.

69. OettgenHC, MartinTR, Wynshaw-BorisA, DengC, DrazenJM, et al. (1994) Active anaphylaxis in IgE-deficient mice. Nature 370: 367–370 doi:10.1038/370367a0

70. MohrsM, LedermannB, KöhlerG, DorfmüllerA, GessnerA, et al. (1999) Differences between IL-4- and IL-4 receptor alpha-deficient mice in chronic leishmaniasis reveal a protective role for IL-13 receptor signaling. J Immunol 162: 7302–7308.

71. HossA, ZwarthoffEC, ZawatzkyR (1989) Differential expression of interferon alpha and beta induced with Newcastle disease virus in mouse macrophage cultures. J Gen Virol 70(Pt 3): 575–589.

72. DyerKD, MoserJM, CzapigaM, SiegelSJ, PercopoCM, et al. (2008) Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow. J Immunol 181: 4004–4009.

73. AllenJE, WynnTA (2011) Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog 7: e1002003 doi:10.1371/journal.ppat.1002003

74. GeiserT, DewaldB, EhrengruberMU, Clark-LewisI, BaggioliniM (1993) The interleukin-8-related chemotactic cytokines GRO alpha, GRO beta, and GRO gamma activate human neutrophil and basophil leukocytes. J Biol Chem 268: 15419–15424.

75. WenteMN, KeaneMP, BurdickMD, FriessH, BüchlerMW, et al. (2006) Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett 241: 221–227 doi:10.1016/j.canlet.2005.10.041

76. BeneditoR, RocaC, SörensenI, AdamsS, GosslerA, et al. (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137: 1124–1135 doi:10.1016/j.cell.2009.03.025

77. BailisW, Yashiro-OhtaniY, FangTC, HattonRD, WeaverCT, et al. (2013) Notch simultaneously orchestrates multiple helper T cell programs independently of cytokine signals. Immunity 39: 148–159 doi:10.1016/j.immuni.2013.07.006

78. WadehraM, IyerR, GoodglickL, BraunJ (2002) The tetraspan protein epithelial membrane protein-2 interacts with beta1 integrins and regulates adhesion. J Biol Chem 277: 41094–41100 doi:10.1074/jbc.M206868200

79. GordonLK, KiyoharaM, FuM, BraunJ, DhawanP, et al. (2013) EMP2 regulates angiogenesis in endometrial cancer cells through induction of VEGF. Oncogene doi:10.1038/onc.2012.622

80. BouchonA, DietrichJ, ColonnaM (2000) Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 164: 4991–4995.

81. BleharskiJR, KiesslerV, BuonsantiC, SielingPA, StengerS, et al. (2003) A role for triggering receptor expressed on myeloid cells-1 in host defense during the early-induced and adaptive phases of the immune response. J Immunol 170: 3812–3818.

82. ChengP-C, LinC-N, ChenY-J, ChangF-S, TsaihongJC, et al. (2011) Triggering receptor expressed on myeloid cells (TREM)-1 participates in Schistosoma mansoni inflammatory responses. Parasite Immunol 33: 276–286 doi:10.1111/j.1365-3024.2011.01284.x

83. HuD, CrossJC (2011) Ablation of Tpbpa-positive trophoblast precursors leads to defects in maternal spiral artery remodeling in the mouse placenta. Dev Biol 358: 231–239 doi:10.1016/j.ydbio.2011.07.036

84. EhrchenJM, SunderkötterC, FoellD, VoglT, RothJ (2009) The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 86: 557–566 doi:10.1189/jlb.1008647

85. PasseyRJ, XuK, HumeDA, GeczyCL (1999) S100A8: emerging functions and regulation. J Leukoc Biol 66: 549–556.

86. Wills-KarpM, RaniR, DiengerK, LewkowichI, FoxJG, et al. (2012) Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. J Exp Med 209: 607–622 doi:10.1084/jem.20110079

87. PhillipsDJ, WoodruffTK (2004) Inhibin: actions and signalling. Growth Factors 22: 13–18.

88. OgawaK, FunabaM, ChenY, TsujimotoM (2006) Activin A functions as a Th2 cytokine in the promotion of the alternative activation of macrophages. J Immunol 177: 6787–6794.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2013 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Eozinofilní granulomatóza s polyangiitidou
nový kurz
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa