-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
A Small Molecule Glycosaminoglycan Mimetic Blocks Invasion of the Mosquito Midgut
Malaria transmission-blocking (T-B) interventions are essential for malaria elimination. Small molecules that inhibit the Plasmodium ookinete-to-oocyst transition in the midgut of Anopheles mosquitoes, thereby blocking sporogony, represent one approach to achieving this goal. Chondroitin sulfate glycosaminoglycans (CS-GAGs) on the Anopheles gambiae midgut surface are putative ligands for Plasmodium falciparum ookinetes. We hypothesized that our synthetic polysulfonated polymer, VS1, acting as a decoy molecular mimetic of midgut CS-GAGs confers malaria T-B activity. In our study, VS1 repeatedly reduced midgut oocyst development by as much as 99% (P<0.0001) in mosquitoes fed with P. falciparum and Plasmodium berghei. Through direct-binding assays, we observed that VS1 bound to two critical ookinete micronemal proteins, each containing at least one von Willebrand factor A (vWA) domain: (i) circumsporozoite protein and thrombospondin-related anonymous protein-related protein (CTRP) and (ii) vWA domain-related protein (WARP). By immunofluorescence microscopy, we observed that VS1 stains permeabilized P. falciparum and P. berghei ookinetes but does not stain P. berghei CTRP knockouts or transgenic parasites lacking the vWA domains of CTRP while retaining the thrombospondin repeat region. We produced structural homology models of the first vWA domain of CTRP and identified, as expected, putative GAG-binding sites on CTRP that align closely with those predicted for the human vWA A1 domain and the Toxoplasma gondii MIC2 adhesin. Importantly, the models also identified patches of electropositive residues that may extend CTRP's GAG-binding motif and thus potentiate VS1 binding. Our molecule binds to a critical, conserved ookinete protein, CTRP, and exhibits potent malaria T-B activity. This study lays the framework for a high-throughput screen of existing libraries of safe compounds to identify those with potent T-B activity. We envision that such compounds when used as partner drugs with current antimalarial regimens and with RTS,S vaccine delivery could prevent the transmission of drug-resistant and vaccine-breakthrough strains.
Vyšlo v časopise: A Small Molecule Glycosaminoglycan Mimetic Blocks Invasion of the Mosquito Midgut. PLoS Pathog 9(11): e32767. doi:10.1371/journal.ppat.1003757
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003757Souhrn
Malaria transmission-blocking (T-B) interventions are essential for malaria elimination. Small molecules that inhibit the Plasmodium ookinete-to-oocyst transition in the midgut of Anopheles mosquitoes, thereby blocking sporogony, represent one approach to achieving this goal. Chondroitin sulfate glycosaminoglycans (CS-GAGs) on the Anopheles gambiae midgut surface are putative ligands for Plasmodium falciparum ookinetes. We hypothesized that our synthetic polysulfonated polymer, VS1, acting as a decoy molecular mimetic of midgut CS-GAGs confers malaria T-B activity. In our study, VS1 repeatedly reduced midgut oocyst development by as much as 99% (P<0.0001) in mosquitoes fed with P. falciparum and Plasmodium berghei. Through direct-binding assays, we observed that VS1 bound to two critical ookinete micronemal proteins, each containing at least one von Willebrand factor A (vWA) domain: (i) circumsporozoite protein and thrombospondin-related anonymous protein-related protein (CTRP) and (ii) vWA domain-related protein (WARP). By immunofluorescence microscopy, we observed that VS1 stains permeabilized P. falciparum and P. berghei ookinetes but does not stain P. berghei CTRP knockouts or transgenic parasites lacking the vWA domains of CTRP while retaining the thrombospondin repeat region. We produced structural homology models of the first vWA domain of CTRP and identified, as expected, putative GAG-binding sites on CTRP that align closely with those predicted for the human vWA A1 domain and the Toxoplasma gondii MIC2 adhesin. Importantly, the models also identified patches of electropositive residues that may extend CTRP's GAG-binding motif and thus potentiate VS1 binding. Our molecule binds to a critical, conserved ookinete protein, CTRP, and exhibits potent malaria T-B activity. This study lays the framework for a high-throughput screen of existing libraries of safe compounds to identify those with potent T-B activity. We envision that such compounds when used as partner drugs with current antimalarial regimens and with RTS,S vaccine delivery could prevent the transmission of drug-resistant and vaccine-breakthrough strains.
Zdroje
1. AlonsoPL, BrownG, Arevalo-HerreraM, BinkaF, ChitnisC, et al. (2011) A research agenda to underpin malaria eradication. PLoS Med 8(1): e1000406.
2. malERA Consultative Group on Drugs (2011) A research agenda for malaria eradication: Drugs. PLoS Med 8(1): e1000402.
3. DinglasanRR, Jacobs-LorenaM (2005) Insight into a conserved lifestyle: Protein-carbohydrate adhesion strategies of vector-borne pathogens. Infect Immun 73(12): 7797–7807.
4. DinglasanRR, KalumeDE, KanzokSM, GhoshAK, MuratovaO, et al. (2007) Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen. Proc Natl Acad Sci USA 104(33): 13461–13466.
5. DinglasanRR, AlagananA, GhoshAK, SaitoA, van KuppeveltTH, et al. (2007) Plasmodium falciparum ookinetes require mosquito midgut chondroitin sulfate proteoglycans for cell invasion. Proc Natl Acad Sci USA 104(40): 15882–15887.
6. AngrisanoF, TanY, SturmA, McFaddenGI, BaumJ (2012) Malaria parasite colonisation of the mosquito midgut - placing the Plasmodium ookinete centre stage. Int J Parasitol 42(6): 519–527.
7. DelvesM, PlouffeD, ScheurerC, MeisterS, WittlinS, et al. (2012) The activities of current antimalarial drugs on the life cycle stages of Plasmodium: A comparative study with human and rodent parasites. PLoS Med 9(2): e1001169.
8. TrotteinF, TrigliaT, CowmanAF (1995) Molecular cloning of a gene from Plasmodium falciparum that codes for a protein sharing motifs found in adhesive molecules from mammals and plasmodia. Mol Biochem Parasitol 74(2): 129–141.
9. DessensJT, BeetsmaAL, DimopoulosG, WengelnikK, CrisantiA, et al. (1999) CTRP is essential for mosquito infection by malaria ookinetes. EMBO J 18(22): 6221–6227.
10. LiFW, TempletonTJ, PopovV, ComerJE, TsuboiT, et al. (2004) Plasmodium ookinete-secreted proteins secreted through a common micronemal pathway are targets of blocking malaria transmission. J Biol Chem 279(25): 26635–26644.
11. TempletonTJ, KaslowDC, FidockDA (2000) Developmental arrest of the human malaria parasite Plasmodium falciparum within the mosquito midgut via CTRP gene disruption. Mol Microbiol 36(1): 1–9.
12. YudaM, SawaiT, ChinzeiY (1999) Structure and expression of an adhesive protein-like molecule of mosquito invasive-stage malarial parasite. J Exp Med 189(12): 1947–1952.
13. YudaM, SakaidaH, ChinzeiY (1999) Targeted disruption of the Plasmodium berghei CTRP gene reveals its essential role in malaria infection of the vector mosquito. J Exp Med 190(11): 1711–1715.
14. YudaM, YanoK, TsuboiT, ToriiM, ChinzeiY (2001) Von willebrand factor A domain-related protein, a novel microneme protein of the malaria ookinete highly conserved throughout Plasmodium parasites. Mol Biochem Parasitol 116(1): 65–72.
15. RamakrishnanC, DessensJT, ArmsonR, PintoSB, TalmanAM, et al. (2011) Vital functions of the malarial ookinete protein, CTRP, reside in the A domains. Int J Parasitol 41(10): 1029–1039.
16. SinnisP, CoppiA, ToidaT, ToyodaH, Kinoshita-ToyodaA, et al. (2007) Mosquito heparan sulfate and its potential role in malaria infection and transmission. J Biol Chem 282(35): 25376–25384.
17. TsuboiT, TakeoS, IrikoH, JinL, TsuchimochiM, et al. (2008) Wheat germ cell-free system-based production of malaria proteins for discovery of novel vaccine candidates. Infect Immun 76(4): 1702–1708.
18. ArnoldK, BordoliL, KoppJ, SchwedeT (2006) The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22(2): 195–201.
19. SchwedeT, KoppJ, GuexN, PeitschM (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 31(13): 3381–3385.
20. KieferF, ArnoldK, KuenzliM, BordoliL, SchwedeT (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37: D387–D392.
21. KoppJ, SchwedeT (2006) The SWISS-MODEL repository: New features and functionalities. Nucleic Acids Res 34: D315–D318.
22. ZdobnovE, ApweilerR (2001) InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17(9): 847–848.
23. BenkertP, KuenzliM, SchwedeT (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37: W510–W514.
24. PaulRE, BonnetS, BoudinC, TchuinkamT, RobertV (2007) Age-structured gametocyte allocation links immunity to epidemiology in malaria parasites. Malar J 6 : 123.
25. BousemaT, DinglasanRR, MorlaisI, GouagnaLC, van WarmerdamT, et al. (2012) Mosquito feeding assays to determine the infectiousness of naturally infected Plasmodium falciparum gametocyte carriers. PLoS One 7(8): e42821.
26. LalK, PrietoJH, BromleyE, SandersonSJ, Yates,JohnRIII, et al. (2009) Characterisation of Plasmodium invasive organelles; an ookinete microneme proteome. Proteomics 9(5): 1142–1151.
27. SindenRE, WingerLA, HartleyRH, CarterHE, TirawancchaiN, DaviesCS, SluitersJG (1987) Ookinete antigens of Plasmodium berghei: a light and electron microscopic immunogold study of the 21 kD determinant recognized by transmission-blocking antibodies. P Roy Soc Lond B Bio 230 : 443–458.
28. Alejo BlancoAR, PaezA, GeroldP, DearslyAL, MargosG, et al. (1999) The biosynthesis and post-translational modification of Pbs21an ookinete-surface protein of Plasmodium berghei.. Mol Biochem Parasitol 98(2): 163–173.
29. MairGR, BraksJA, GarverLS, WiegantJC, HallN, et al. (2006) Regulation of sexual development of Plasmodium by translational repression. Science 313(5787): 667–669.
30. KanekoO, TempletonTJ, IrikoH, TachibanaM, OtsukiH, et al. (2006) The Plasmodium vivax homolog of the ookinete adhesive micronemal protein, CTRP. Parasitol Int 55(3): 227–231.
31. AdachiT, MatsushitaT, DongZ, KatsumiA, NakayamaT, et al. (2006) Identification of amino acid residues essential for heparin binding by the A1 domain of human von willebrand factor. Biochem Biophys Res Commun 339(4): 1178–1183.
32. EmsleyJ, CruzM, HandinR, LiddingtonR (1998) Crystal structure of the von willebrand factor A1 domain and implications for the binding of platelet glycoprotein ib. J Biol Chem 273(17): 10396–10401.
33. Rastegar-LariG, VilloutreixB, RibbaA, LegendreP, MeyerD, et al. (2002) Two clusters of charged residues located in the electropositive face of the von willebrand factor A1 domain are essential for heparin binding. Biochemistry (N Y) 41(21): 6668–6678.
34. TonkinML, GrujicO, PearceM, CrawfordJ, BoulangerMJ (2010) Structure of the micronemal protein 2 A/I domain from Toxoplasma gondii. Protein Sci 19(10): 1985–1990.
35. BoyleMJ, RichardsJS, GilsonPR, ChaiW, BeesonJG (2010) Interactions with heparin-like molecules during erythrocyte invasion by Plasmodium falciparum merozoites. Blood 115(22): 4559–4568.
36. CrandallIE, SzarekWA, VlahakisJZ, XuY, VohraR, et al. (2007) Sulfated cyclodextrins inhibit the entry of Plasmodium into red blood cells - implications for malarial therapy. Biochem Pharmacol 73(5): 632–642.
37. AchurRN, KakizakiI, GoelS, KojimaK, MadhunapantulaSV, et al. (2008) Structural interactions in chondroitin 4-sulfate mediated adherence of Plasmodium falciparum infected erythrocytes in human placenta during pregnancy-associated malaria. Biochemistry (NY) 47(47): 12635–12643.
38. ArmisteadJS, WilsonIB, van KuppeveltTH, DinglasanRR (2011) A role for heparan sulfate proteoglycans in Plasmodium falciparum sporozoite invasion of anopheline mosquito salivary glands. Biochem J 438(3): 475–483.
39. SinnisP, CoppiA (2007) A long and winding road: The Plasmodium sporozoite's journey in the mammalian host. Parasitol Int 56(3): 171–178.
40. HilemanR, FrommJ, WeilerJ, LinhardtR (1998) Glycosaminoglycan-protein interactions: Definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20(2): 156–167.
41. KuschertG, CoulinF, PowerC, ProudfootA, HubbardR, et al. (1999) Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry (NY) 38(39): 12959–12968.
42. MartinL, BlanpainC, GarnierP, WittamerV, ParmentierM, et al. (2001) Structural and functional analysis of the RANTES-glycosaminoglycans interactions. Biochemistry (NY) 40(21): 6303–6318.
43. McCormickC, TuckwellD, CrisantiA, HumphriesM, HollingdaleM (1999) Identification of heparin as a ligand for the A-domain of Plasmodium falciparum thrombospondin-related adhesion protein. Mol Biochem Parasitol 100(1): 111–124.
44. AkhouriR, BhattacharyyaA, PattnaikP, MalhotraP, SharmaA (2004) Structural and functional dissection of the adhesive domains of Plasmodium falciparum thrombospondin-related anonymous protein (TRAP). Biochem J 379 : 815–822.
45. BaumJ, BillkerO, BousemaT, DinglasanR, McGovernV, et al. (2011) A research agenda for malaria eradication: Basic science and enabling technologies. PLoS Med 8(1): e1000399.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium
Článok vyšiel v časopisePLOS Pathogens
Najčítanejšie tento týždeň
2013 Číslo 11- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
-
Všetky články tohto čísla
- Baculoviruses: Sophisticated Pathogens of Insects
- How Do Viruses Avoid Inhibition by Endogenous Cellular MicroRNAs?
- The Regulation of Trypanosome Gene Expression by RNA-Binding Proteins
- DNA Damage Repair and Bacterial Pathogens
- Disease to Dirt: The Biology of Microbial Amyloids
- Fungal Immune Evasion in a Model Host–Pathogen Interaction: Versus Macrophages
- Infectious Prions Accumulate to High Levels in Non Proliferative C2C12 Myotubes
- The Biology and Taxonomy of Head and Body Lice—Implications for Louse-Borne Disease Prevention
- Antibodies Trap Tissue Migrating Helminth Larvae and Prevent Tissue Damage by Driving IL-4Rα-Independent Alternative Differentiation of Macrophages
- The Effects of Somatic Hypermutation on Neutralization and Binding in the PGT121 Family of Broadly Neutralizing HIV Antibodies
- Natural Selection Promotes Antigenic Evolvability
- Type I Interferon Protects against Pneumococcal Invasive Disease by Inhibiting Bacterial Transmigration across the Lung
- Mode of Parainfluenza Virus Transmission Determines the Dynamics of Primary Infection and Protection from Reinfection
- Type I and Type III Interferons Drive Redundant Amplification Loops to Induce a Transcriptional Signature in Influenza-Infected Airway Epithelia
- Unraveling a Three-Step Spatiotemporal Mechanism of Triggering of Receptor-Induced Nipah Virus Fusion and Cell Entry
- A Novel Membrane Sensor Controls the Localization and ArfGEF Activity of Bacterial RalF
- Macrophage and T Cell Produced IL-10 Promotes Viral Chronicity
- Global Rescue of Defects in HIV-1 Envelope Glycoprotein Incorporation: Implications for Matrix Structure
- Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II
- The Neonatal Fc Receptor (FcRn) Enhances Human Immunodeficiency Virus Type 1 (HIV-1) Transcytosis across Epithelial Cells
- Brd4 Is Displaced from HPV Replication Factories as They Expand and Amplify Viral DNA
- A Viral Genome Landscape of RNA Polyadenylation from KSHV Latent to Lytic Infection
- The Cytotoxic Necrotizing Factor of (CNF) Enhances Inflammation and Yop Delivery during Infection by Activation of Rho GTPases
- The Inflammatory Kinase MAP4K4 Promotes Reactivation of Kaposi's Sarcoma Herpesvirus and Enhances the Invasiveness of Infected Endothelial Cells
- Conservative Sex and the Benefits of Transformation in
- Microbial Endocrinology in the Microbiome-Gut-Brain Axis: How Bacterial Production and Utilization of Neurochemicals Influence Behavior
- Colonization Resistance: Battle of the Bugs or Ménage à Trois with the Host?
- Intracellular Interferons in Fish: A Unique Means to Combat Viral Infection
- SPOC1-Mediated Antiviral Host Cell Response Is Antagonized Early in Human Adenovirus Type 5 Infection
- Involvement of the Cellular Phosphatase DUSP1 in Vaccinia Virus Infection
- Killer Bee Molecules: Antimicrobial Peptides as Effector Molecules to Target Sporogonic Stages of
- A Unique SUMO-2-Interacting Motif within LANA Is Essential for KSHV Latency
- A Role for Host Activation-Induced Cytidine Deaminase in Innate Immune Defense against KSHV
- Haploid Genetic Screens Identify an Essential Role for PLP2 in the Downregulation of Novel Plasma Membrane Targets by Viral E3 Ubiquitin Ligases
- A Small Molecule Glycosaminoglycan Mimetic Blocks Invasion of the Mosquito Midgut
- Identification of the Adenovirus E4orf4 Protein Binding Site on the B55α and Cdc55 Regulatory Subunits of PP2A: Implications for PP2A Function, Tumor Cell Killing and Viral Replication
- Can Non-lytic CD8+ T Cells Drive HIV-1 Escape?
- Deletion of the α-(1,3)-Glucan Synthase Genes Induces a Restructuring of the Conidial Cell Wall Responsible for the Avirulence of
- PLOS Pathogens
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Baculoviruses: Sophisticated Pathogens of Insects
- Identification of the Adenovirus E4orf4 Protein Binding Site on the B55α and Cdc55 Regulatory Subunits of PP2A: Implications for PP2A Function, Tumor Cell Killing and Viral Replication
- A Unique SUMO-2-Interacting Motif within LANA Is Essential for KSHV Latency
- Natural Selection Promotes Antigenic Evolvability
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy