#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Dynamic Landscape for Antibody Binding Modulates Antibody-Mediated Neutralization of West Nile Virus


Neutralizing antibodies are a significant component of the host's protective response against flavivirus infection. Neutralization of flaviviruses occurs when individual virions are engaged by antibodies with a stoichiometry that exceeds a required threshold. From this “multiple-hit” perspective, the neutralizing activity of antibodies is governed by the affinity with which it binds its epitope and the number of times this determinant is displayed on the surface of the virion. In this study, we investigated time-dependent changes in the fate of West Nile virus (WNV) decorated with antibody in solution. Experiments with the well-characterized neutralizing monoclonal antibody (MAb) E16 revealed a significant increase in neutralization activity over time that could not be explained by the kinetics of antibody binding, virion aggregation, or the action of complement. Additional kinetic experiments using the fusion-loop specific MAb E53, which has limited neutralizing activity because it recognizes a relatively inaccessible epitope on mature virions, identified a role of virus “breathing” in regulating neutralization activity. Remarkably, MAb E53 neutralized mature WNV in a time- and temperature-dependent manner. This phenomenon was confirmed in studies with a large panel of MAbs specific for epitopes in each domain of the WNV envelope protein, with sera from recipients of a live attenuated WNV vaccine, and in experiments with dengue virus. Given enough time, significant inhibition of infection was observed even for antibodies with very limited, or no neutralizing activity in standard neutralization assays. Together, our data suggests that the structural dynamics of flaviviruses impacts antibody-mediated neutralization via exposure of otherwise inaccessible epitopes, allowing for antibodies to dock on the virion with a stoichiometry sufficient for neutralization.


Vyšlo v časopise: A Dynamic Landscape for Antibody Binding Modulates Antibody-Mediated Neutralization of West Nile Virus. PLoS Pathog 7(6): e32767. doi:10.1371/journal.ppat.1002111
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002111

Souhrn

Neutralizing antibodies are a significant component of the host's protective response against flavivirus infection. Neutralization of flaviviruses occurs when individual virions are engaged by antibodies with a stoichiometry that exceeds a required threshold. From this “multiple-hit” perspective, the neutralizing activity of antibodies is governed by the affinity with which it binds its epitope and the number of times this determinant is displayed on the surface of the virion. In this study, we investigated time-dependent changes in the fate of West Nile virus (WNV) decorated with antibody in solution. Experiments with the well-characterized neutralizing monoclonal antibody (MAb) E16 revealed a significant increase in neutralization activity over time that could not be explained by the kinetics of antibody binding, virion aggregation, or the action of complement. Additional kinetic experiments using the fusion-loop specific MAb E53, which has limited neutralizing activity because it recognizes a relatively inaccessible epitope on mature virions, identified a role of virus “breathing” in regulating neutralization activity. Remarkably, MAb E53 neutralized mature WNV in a time- and temperature-dependent manner. This phenomenon was confirmed in studies with a large panel of MAbs specific for epitopes in each domain of the WNV envelope protein, with sera from recipients of a live attenuated WNV vaccine, and in experiments with dengue virus. Given enough time, significant inhibition of infection was observed even for antibodies with very limited, or no neutralizing activity in standard neutralization assays. Together, our data suggests that the structural dynamics of flaviviruses impacts antibody-mediated neutralization via exposure of otherwise inaccessible epitopes, allowing for antibodies to dock on the virion with a stoichiometry sufficient for neutralization.


Zdroje

1. LindenbachBDThielHJRiceCM 2007 Flaviviridae: The Viruses and Their Replication. KnipeDMHowleyPM Fields Virology. 5th ed Philadelphia Lippincott-Williams & Wilkins 1101 1152

2. SejvarJJ 2007 The long-term outcomes of human West Nile virus infection. Clin Infect Dis 44 1617 1624

3. PlanitzerCBModrofJYuMYKreilTR 2009 West Nile virus infection in plasma of blood and plasma donors, United States. Emerg Infect Dis 15 1668 1670

4. Fernandez-GarciaMDMazzonMJacobsMAmaraA 2009 Pathogenesis of flavivirus infections: using and abusing the host cell. Cell Host Microbe 5 318 328

5. BrintonMA 2002 The molecular biology of West Nile Virus: a new invader of the western hemisphere. Annu Rev Microbiol 56 371 402

6. PereraRKuhnRJ 2008 Structural proteomics of dengue virus. Curr Opin Microbiol 11 369 377

7. MackenzieJMKhromykhAAPartonRG 2007 Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe 2 229 239

8. RoosendaalJWestawayEGKhromykhAMackenzieJM 2006 Regulated cleavages at the West Nile virus NS4A-2K-NS4B junctions play a major role in rearranging cytoplasmic membranes and Golgi trafficking of the NS4A protein. J Virol 80 4623 4632

9. Laurent-RolleMBoerEFLubickKJWolfinbargerJBCarmodyAB 2010 The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J Virol 84 3503 3515

10. Munoz-JordanJLSanchez-BurgosGGLaurent-RolleMGarcia-SastreA 2003 Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A 100 14333 14338

11. AvirutnanPFuchsAHauhartRESomnukePYounS 2010 Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med 207 793 806

12. ZhangYKaufmannBChipmanPRKuhnRJRossmannMG 2007 Structure of immature West Nile virus. J Virol 81 6141 6145

13. ZhangYCorverJChipmanPRZhangWPletnevSV 2003 Structures of immature flavivirus particles. EMBO J 22 2604 2613

14. YuIMZhangWHoldawayHALiLKostyuchenkoVA 2008 Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319 1834 1837

15. LiLLokSMYuIMZhangYKuhnRJ 2008 The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319 1830 1834

16. AllisonSLSchalichJStiasnyKMandlCWKunzC 1995 Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J Virol 69 695 700

17. ElshuberSAllisonSLHeinzFXMandlCW 2003 Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J Gen Virol 84 183 191

18. GuirakhooFBolinRARoehrigJT 1992 The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology 191 921 931

19. DavisCWNguyenHYHannaSLSanchezMDDomsRW 2006 West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80 1290 1301

20. Rodenhuis-ZybertIAvan der SchaarHMda Silva VoorhamJMvan der Ende-MetselaarHLeiHY 2010 Immature dengue virus: a veiled pathogen? PLoS Pathog 6 e1000718

21. NelsonSJostCAXuQEssJMartinJE 2008 Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization. PLoS Pathog 4 e1000060

22. JunjhonJEdwardsTJUtaipatUBowmanVDHoldawayHA 2010 Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles. J Virol 84 8353 8358

23. AllisonSLStiasnyKStadlerKMandlCWHeinzFX 1999 Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E. J Virol 73 5605 5612

24. MukhopadhyaySKimBSChipmanPRRossmannMGKuhnRJ 2003 Structure of West Nile virus. Science 302 248

25. KuhnRJZhangWRossmannMGPletnevSVCorverJ 2002 Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108 717 725

26. MukhopadhyaySKuhnRJRossmannMG 2005 A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3 13 22

27. KaufmannBNybakkenGEChipmanPRZhangWDiamondMS 2006 West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody. Proc Natl Acad Sci U S A 103 12400 12404

28. NybakkenGEOliphantTJohnsonSBurkeSDiamondMS 2005 Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 437 764 769

29. PiersonTCFremontDHKuhnRJDiamondMS 2008 Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development. Cell Host Microbe 4 229 238

30. WhiteheadSSBlaneyJEDurbinAPMurphyBR 2007 Prospects for a dengue virus vaccine. Nat Rev Microbiol 5 518 528

31. RoehrigJT 2003 Antigenic structure of flavivirus proteins. Adv Virus Res 59 141 175

32. ColombageGHallRPavyMLobigsM 1998 DNA-based and alphavirus-vectored immunisation with prM and E proteins elicits long-lived and protective immunity against the flavivirus, Murray Valley encephalitis virus. Virology 250 151 163

33. PincusSMasonPWKonishiEFonsecaBAShopeRE 1992 Recombinant vaccinia virus producing the prM and E proteins of yellow fever virus protects mice from lethal yellow fever encephalitis. Virology 187 290 297

34. FalconarAK 1999 Identification of an epitope on the dengue virus membrane (M) protein defined by cross-protective monoclonal antibodies: design of an improved epitope sequence based on common determinants present in both envelope (E and M) proteins. Arch Virol 144 2313 2330

35. VazquezSGuzmanMGGuillenGChineaGPerezAB 2002 Immune response to synthetic peptides of dengue prM protein. Vaccine 20 1823 1830

36. DejnirattisaiWJumnainsongAOnsirisakulNFittonPVasanawathanaS 2010 Cross-reacting antibodies enhance dengue virus infection in humans. Science 328 745 748

37. Della-PortaAJWestawayEG 1978 A multi-hit model for the neutralization of animal viruses. J Gen Virol 38 1 19

38. PiersonTCXuQNelsonSOliphantTNybakkenGE 2007 The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 1 135 145

39. OliphantTNybakkenGEEngleMXuQNelsonCA 2006 Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. J Virol 80 12149 12159

40. StiasnyKKiermayrSHolzmannHHeinzFX 2006 Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites. J Virol 80 9557 9568

41. GromowskiGDBarrettNDBarrettAD 2008 Characterization of Dengue Complex-specific Neutralizing Epitopes on the Envelope Protein Domain III of Dengue 2 Virus. J Virol 82 8828 8837

42. MehlhopENelsonSJostCAGorlatovSJohnsonS 2009 Complement protein C1q reduces the stoichiometric threshold for antibody-mediated neutralization of West Nile virus. Cell Host Microbe 6 381 391

43. WestawayEG 1965 The neutralization of arboviruses. II. Neutralization in heterologous virus-serum mixtures with four group B arboviruses. Virology 26 528 537

44. PeirisJSPorterfieldJS 1979 Antibody-mediated enhancement of Flavivirus replication in macrophage-like cell lines. Nature 282 509 511

45. WitzJBrownF 2001 Structural dynamics, an intrinsic property of viral capsids. Arch Virol 146 2263 2274

46. LokSMKostyuchenkoVNybakkenGEHoldawayHABattistiAJ 2008 Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat Struct Mol Biol 15 312 317

47. BothnerBDongXFBibbsLJohnsonJESiuzdakG 1998 Evidence of viral capsid dynamics using limited proteolysis and mass spectrometry. J Biol Chem 273 673 676

48. LewisJKBothnerBSmithTJSiuzdakG 1998 Antiviral agent blocks breathing of the common cold virus. Proc Natl Acad Sci U S A 95 6774 6778

49. Ansarah-SobrinhoCNelsonSJostCAWhiteheadSSPiersonTC 2008 Temperature-dependent production of pseudoinfectious dengue reporter virus particles by complementation. Virology 381 67 74

50. HalsteadSB 2003 Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60 421 467

51. MorensDMHalsteadSBLarsenLK 1985 Comparison of dengue virus plaque reduction neutralization by macro and “semi-micro’ methods in LLC-MK2 cells. Microbiol Immunol 29 1197 1205

52. CherrierMVKaufmannBNybakkenGELokSMWarrenJT 2009 Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J 28 3269 3276

53. OliphantTEngleMNybakkenGEDoaneCJohnsonS 2005 Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11 522 530

54. ShresthaBBrienJDSukupolvi-PettySAustinSKEdelingMA 2010 The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS Pathog 6 e1000823

55. JohnsonJE 2003 Virus particle dynamics. Adv Protein Chem 64 197 218

56. YewdellJWTaylorAYellenACatonAGerhardW 1993 Mutations in or near the fusion peptide of the influenza virus hemagglutinin affect an antigenic site in the globular region. J Virol 67 933 942

57. RuprechtCRKrarupAReynellLMannAMBrandenbergOF 2011 MPER-specific antibodies induce gp120 shedding and irreversibly neutralize HIV-1. J Exp Med 208 439 454

58. FinneganCMBergWLewisGKDeVicoAL 2002 Antigenic properties of the human immunodeficiency virus transmembrane glycoprotein during cell-cell fusion. J Virol 76 12123 12134

59. BinleyJMWrinTKorberBZwickMBWangM 2004 Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 78 13232 13252

60. RoehrigJTStaudingerLAHuntARMathewsJHBlairCD 2001 Antibody prophylaxis and therapy for flavivirus encephalitis infections. Ann N Y Acad Sci 951 286 297

61. MathewsJHRoehrigJT 1984 Elucidation of the topography and determination of the protective epitopes on the E glycoprotein of Saint Louis encephalitis virus by passive transfer with monoclonal antibodies. J Immunol 132 1533 1537

62. Sukupolvi-PettySAustinSKEngleMBrienJDDowdKA 2010 Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol 84 9227 9239

63. MehlhopEAnsarah-SobrinhoCJohnsonSEngleMFremontDH 2007 Complement protein C1q inhibits antibody-dependent enhancement of flavivirus infection in an IgG subclass-specific manner. Cell Host Microbe 2 417 426

64. OliphantTNybakkenGEAustinSKXuQBramsonJ 2007 Induction of epitope-specific neutralizing antibodies against West Nile virus. J Virol 81 11828 11839

65. PiersonTCSanchezMDPufferBAAhmedAAGeissBJ 2006 A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology 346 53 65

66. DavisCWMatteiLMNguyenHYAnsarah-SobrinhoCDomsRW 2006 The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). J Biol Chem 281 37183 37194

67. AndrewesCHElfordWJ 1933 Observations on anti-phage sera. I. ‘he percentage law’. Br J Exp Pathol 14 367 376

68. HannaSLPiersonTCSanchezMDAhmedAAMurtadhaMM 2005 N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. J Virol 79 13262 13274

69. GeissBJPiersonTCDiamondMS 2005 Actively replicating West Nile virus is resistant to cytoplasmic delivery of siRNA. Virol J 2 53

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#