#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

is an Unstable Pathogen
Showing Evidence of Significant Genomic Flux


Citrobacter rodentium is a natural mouse pathogen that causes

attaching and effacing (A/E) lesions. It shares a common virulence strategy with

the clinically significant human A/E pathogens enteropathogenic E.

coli
(EPEC) and enterohaemorrhagic E. coli (EHEC)

and is widely used to model this route of pathogenesis. We previously reported

the complete genome sequence of C. rodentium ICC168, where we

found that the genome displayed many characteristics of a newly evolved

pathogen. In this study, through PFGE, sequencing of isolates showing variation,

whole genome transcriptome analysis and examination of the mobile genetic

elements, we found that, consistent with our previous hypothesis, the genome of

C. rodentium is unstable as a result of repeat-mediated,

large-scale genome recombination and because of active transposition of mobile

genetic elements such as the prophages. We sequenced an additional C.

rodentium
strain, EX-33, to reveal that the reference strain ICC168

is representative of the species and that most of the inactivating mutations

were common to both isolates and likely to have occurred early on in the

evolution of this pathogen. We draw parallels with the evolution of other

bacterial pathogens and conclude that C. rodentium is a

recently evolved pathogen that may have emerged alongside the development of

inbred mice as a model for human disease.


Vyšlo v časopise: is an Unstable Pathogen Showing Evidence of Significant Genomic Flux. PLoS Pathog 7(4): e32767. doi:10.1371/journal.ppat.1002018
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002018

Souhrn

Citrobacter rodentium is a natural mouse pathogen that causes

attaching and effacing (A/E) lesions. It shares a common virulence strategy with

the clinically significant human A/E pathogens enteropathogenic E.

coli
(EPEC) and enterohaemorrhagic E. coli (EHEC)

and is widely used to model this route of pathogenesis. We previously reported

the complete genome sequence of C. rodentium ICC168, where we

found that the genome displayed many characteristics of a newly evolved

pathogen. In this study, through PFGE, sequencing of isolates showing variation,

whole genome transcriptome analysis and examination of the mobile genetic

elements, we found that, consistent with our previous hypothesis, the genome of

C. rodentium is unstable as a result of repeat-mediated,

large-scale genome recombination and because of active transposition of mobile

genetic elements such as the prophages. We sequenced an additional C.

rodentium
strain, EX-33, to reveal that the reference strain ICC168

is representative of the species and that most of the inactivating mutations

were common to both isolates and likely to have occurred early on in the

evolution of this pathogen. We draw parallels with the evolution of other

bacterial pathogens and conclude that C. rodentium is a

recently evolved pathogen that may have emerged alongside the development of

inbred mice as a model for human disease.


Zdroje

1. ParkhillJDouganGJamesKDThomsonNRPickardD

2001

Complete genome sequence of a multiple drug resistant

Salmonella enterica serovar Typhi CT18.

Nature

413

848

852

2. ParkhillJWrenBWThomsonNRTitballRWHoldenMT

2001

Genome sequence of Yersinia pestis, the

causative agent of plague.

Nature

413

523

527

3. BartholdSWColemanGLJacobyROLivestoneEMJonasAM

1978

Transmissible murine colonic hyperplasia.

Vet Pathol

15

223

236

4. SchauerDBFalkowS

1993

Attaching and effacing locus of a Citrobacter

freundii biotype that causes transmissible murine colonic

hyperplasia.

Infect Immun

61

2486

2492

5. SchauerDBZabelBAPedrazaIFO'HaraCMSteigerwaltAG

1995

Genetic and biochemical characterization of Citrobacter

rodentium sp. nov.

J Clin Microbiol

33

2064

2068

6. WalesADWoodwardMJPearsonGR

2005

Attaching-effacing bacteria in animals.

J Comp Pathol

132

1

26

7. DengWLiYVallanceBAFinlayBB

2001

Locus of enterocyte effacement from Citrobacter

rodentium: sequence analysis and evidence for horizontal

transfer among attaching and effacing pathogens.

Infect Immun

69

6323

6335

8. LuperchioSASchauerDB

2001

Molecular pathogenesis of Citrobacter rodentium

and transmissible murine colonic hyperplasia.

Microbes Infect

3

333

340

9. MundyRMacdonaldTTDouganGFrankelGWilesS

2005

Citrobacter rodentium of mice and

man.

Cell Microbiol

7

1697

1706

10. ItohKMaejimaKUedaKFujiwaraK

1978

Effect of intestinal flora on megaenteron of

mice.

Microbiol Immunol

22

661

672

11. ItohKMatsuiTTsujiKMitsuokaTUedaK

1988

Genetic control in the susceptibility of germfree inbred mice to

infection by Escherichia coli O115a,c:K(B).

Infect Immun

56

930

935

12. MutoTNakagawaMIsobeYSaitoMNakanoT

1969

Infectious megaenteron of mice. I. Manifestation and pathological

observation.

Jpn J Med Sci Biol

22

363

374

13. BartholdSWColemanGLBhattPNOsbaldistonGWJonasAM

1976

The etiology of transmissible murine colonic

hyperplasia.

Lab Anim Sci

26

889

894

14. BrennanPCFritzTEFlynnRJPooleCM

1965

Citrobacter freundii associated with diarrhea in

laboratory mice.

Lab Anim Care

15

266

275

15. EdigerRDKovatchRMRabsteinMM

1974

Colitis in mice with a high incidence of rectal

prolapse.

Lab Anim Sci

24

488

494

16. BrennerDJGrimontPASteigerwaltAGFanningGRAgeronE

1993

Classification of citrobacteria by DNA hybridization: designation

of Citrobacter farmeri sp. nov., Citrobacter

youngae sp. nov., Citrobacter braakii sp.

nov., Citrobacter werkmanii sp. nov., Citrobacter

sedlakii sp. nov., and three unnamed

Citrobacter genomospecies.

Int J Syst Bacteriol

43

645

658

17. LuperchioSANewmanJVDanglerCASchrenzelMDBrennerDJ

2000

Citrobacter rodentium, the causative agent of

transmissible murine colonic hyperplasia, exhibits clonality: synonymy of

C. rodentium and mouse-pathogenic Escherichia

coli.

J Clin Microbiol

38

4343

4350

18. OkutaniATobeTSasakawaCNozuRGotohK

2001

Comparison of bacteriological, genetic and pathological

characters between Escherichia coli O115a,c:K(B) and

Citrobacter rodentium.

Exp Anim

50

183

186

19. BartholdSWOsbaldistonGWJonasAM

1977

Dietary, bacterial, and host genetic interactions in the

pathogenesis of transmissible murine colonic hyperplasia.

Lab Anim Sci

27

938

945

20. PettyNKBulginRCrepinVFCerdeno-TarragaAMSchroederGN

2010

The Citrobacter rodentium genome sequence

reveals convergent evolution with human pathogenic Escherichia

coli.

J Bacteriol

192

525

538

21. LobryJR

1996

Asymmetric substitution patterns in the two DNA strands of

bacteria.

Mol Biol Evol

13

660

665

22. BlattnerFRPlunkettG3rdBlochCAPernaNTBurlandV

1997

The complete genome sequence of Escherichia coli

K-12.

Science

277

1453

1474

23. McClellandMSandersonKESpiethJCliftonSWLatreilleP

2001

Complete genome sequence of Salmonella enterica

serovar Typhimurium LT2.

Nature

413

852

856

24. SandersonKELiuSL

1998

Chromosomal rearrangements in enteric bacteria.

Electrophoresis

19

569

572

25. OokaTOguraYAsadulghaniMOhnishiMNakayamaK

2009

Inference of the impact of insertion sequence (IS) elements on

bacterial genome diversification through analysis of small-size structural

polymorphisms in Escherichia coli O157

genomes.

Genome Res

19

1809

1816

26. GirardeauJPBertinYMartinC

2009

Genomic analysis of the PAI ICL3 locus in pathogenic LEE-negative

Shiga toxin-producing Escherichia coli and

Citrobacter rodentium.

Microbiology

155

1016

1027

27. JacksonAPThomasGHParkhillJThomsonNR

2009

Evolutionary diversification of an ancient gene family

(rhs) through C-terminal displacement.

BMC Genomics

10

584

28. MacnabRM

1996

Flagella and motility.

UmbargerHE

Escherichia coli and Salmonella

Typhimurium: Cellular and Molecular Biology

2nd ed. Washington, DC

American Society for Microbiology

123

145

29. RenCPBeatsonSAParkhillJPallenMJ

2005

The Flag-2 locus, an ancestral gene cluster, is potentially

associated with a novel flagellar system from Escherichia

coli.

J Bacteriol

187

1430

1440

30. AldridgePKarlinseyJHughesKT

2003

The type III secretion chaperone FlgN regulates flagellar

assembly via a negative feedback loop containing its chaperone substrates

FlgK and FlgL.

Mol Microbiol

49

1333

1345

31. KhanMABouzariSMaCRosenbergerCMBergstromKS

2008

Flagellin-dependent and -independent inflammatory responses

following infection by enteropathogenic Escherichia coli

and Citrobacter rodentium.

Infect Immun

76

1410

1422

32. LiJSmithNHNelsonKCrichtonPBOldDC

1993

Evolutionary origin and radiation of the avian-adapted non-motile

salmonellae.

J Med Microbiol

38

129

139

33. LengelerJ

1977

Analysis of mutations affecting the dissimilation of galactitol

(dulcitol) in Escherichia coli K-12.

Mol Gen Genet

152

83

91

34. EcholsHGreenL

1971

Establishment and maintenance of repression by bacteriophage

lambda: the role of the cI, cII, and

cIII proteins.

Proc Natl Acad Sci U S A

68

2190

2194

35. PerkinsTTKingsleyRAFookesMCGardnerPPJamesKD

2009

A strand-specific RNA-Seq analysis of the transcriptome of the

typhoid bacillus Salmonella typhi.

PLoS Genet

5

e1000569

36. DengWde HoogCLYuHBLiYCroxenMA

2010

A comprehensive proteomic analysis of the type III secretome of

Citrobacter rodentium.

J Biol Chem

285

6790

6800

37. MorganGJHatfullGFCasjensSHendrixRW

2002

Bacteriophage Mu genome sequence: analysis and comparison with

Mu-like prophages in Haemophilus,

Neisseria and

Deinococcus.

J Mol Biol

317

337

359

38. ToussaintA

1985

Bacteriophage Mu and its use as a genetic tool.

GalizziA

Genetics of Bacteria

London

Academic Press

117

146

39. PettyNKFouldsIJPradelEEwbankJJSalmondGPC

2006

A generalized transducing phage (phiIF3) for the genomically

sequenced Serratia marcescens strain Db11: a tool for

functional genomics of an opportunistic human pathogen.

Microbiology

152

1701

1708

40. AckermannHW

2003

Bacteriophage observations and evolution.

Res Microbiol

154

245

251

41. WilesSClareSHarkerJHuettAYoungD

2004

Organ specificity, colonization and clearance dynamics in

vivo following oral challenges with the murine pathogen

Citrobacter rodentium.

Cell Microbiol

6

963

972

42. PettyNKToribioALGouldingDFouldsIThomsonN

2007

A generalized transducing phage for the murine pathogen

Citrobacter rodentium.

Microbiology

153

2984

2988

43. ScottAETimmsARConnertonPLLoc CarrilloCAdzfa RadzumK

2007

Genome dynamics of Campylobacter jejuni in

response to bacteriophage predation.

PLoS Pathog

3

e119

44. KraftCStackAJosenhansCNiehusEDietrichG

2006

Genomic changes during chronic Helicobacter

pylori infection.

J Bacteriol

188

249

254

45. GoerkeCMatias y PapenbergSDasbachSDietzKZiebachR

2004

Increased frequency of genomic alterations in

Staphylococcus aureus during chronic infection is in

part due to phage mobilization.

J Infect Dis

189

724

734

46. MatheeKNarasimhanGValdesCQiuXMatewishJM

2008

Dynamics of Pseudomonas aeruginosa genome

evolution.

Proc Natl Acad Sci U S A

105

3100

3105

47. BielaszewskaMPragerRKockRMellmannAZhangW

2007

Shiga toxin gene loss and transfer in vitro and

in vivo during enterohemorrhagic Escherichia

coli O26 infection in humans.

Appl Environ Microbiol

73

3144

3150

48. FriedrichAWZhangWBielaszewskaMMellmannAKockR

2007

Prevalence, virulence profiles, and clinical significance of

Shiga toxin-negative variants of enterohemorrhagic Escherichia

coli O157 infection in humans.

Clin Infect Dis

45

39

45

49. LevineMMNataroJPKarchHBaldiniMMKaperJB

1985

The diarrheal response of humans to some classic serotypes of

enteropathogenic Escherichia coli is dependent on a plasmid

encoding an enteroadhesiveness factor.

J Infect Dis

152

550

559

50. MellmannABielaszewskaMZimmerhacklLBPragerRHarmsenD

2005

Enterohemorrhagic Escherichia coli in human

infection: in vivo evolution of a bacterial

pathogen.

Clin Infect Dis

41

785

792

51. ThomsonNRClaytonDJWindhorstDVernikosGDavidsonS

2008

Comparative genome analysis of Salmonella

Enteritidis PT4 and Salmonella Gallinarum 287/91 provides

insights into evolutionary and host adaptation pathways.

Genome Res

18

1624

1637

52. HoltKEThomsonNRWainJLangridgeGCHasanR

2009

Pseudogene accumulation in the evolutionary histories of

Salmonella enterica serovars Paratyphi A and

Typhi.

BMC Genomics

10

36

53. ColeSTEiglmeierKParkhillJJamesKDThomsonNR

2001

Massive gene decay in the leprosy bacillus.

Nature

409

1007

1011

54. ParkhillJSebaihiaMPrestonAMurphyLDThomsonN

2003

Comparative analysis of the genome sequences of

Bordetella pertussis, Bordetella

parapertussis and Bordetella

bronchiseptica.

Nat Genet

35

32

40

55. QuailMASwerdlowHTurnerDJ

2009

Improved protocols for the Illumina Genome Analyzer sequencing

system.

Curr Protoc Hum Genet

62

18.2.1

18.2.27

56. AssefaSKeaneTMOttoTDNewboldCBerrimanM

2009

ABACAS: algorithm-based automatic contiguation of assembled

sequences.

Bioinformatics

25

1968

1969

57. CarverTJRutherfordKMBerrimanMRajandreamMABarrellBG

2005

ACT: the Artemis Comparison Tool.

Bioinformatics

21

3422

3423

58. NingZCoxAJMullikinJC

2001

SSAHA: a fast search method for large DNA

databases.

Genome Res

11

1725

1729

59. HarrisSRFeilEJHoldenMTQuailMANickersonEK

2010

Evolution of MRSA during hospital transmission and

intercontinental spread.

Science

327

469

474

60. CarverTBohmeUOttoTDParkhillJBerrimanM

2010

BamView: viewing mapped read alignment data in the context of the

reference sequence.

Bioinformatics

26

676

677

61. KadoCILiuST

1981

Rapid procedure for detection and isolation of large and small

plasmids.

J Bacteriol

145

1365

1373

62. CroucherNJFookesMCPerkinsTTTurnerDJMargueratSB

2009

A simple method for directional transcriptome sequencing using

Illumina technology.

Nucleic Acids Res

37

e148

63. CarverTThomsonNBleasbyABerrimanMParkhillJ

2009

DNAPlotter: circular and linear interactive genome

visualization.

Bioinformatics

25

119

120

64. FineranPCEversonLSlaterHSalmondGP

2005

A GntR family transcriptional regulator (PigT) controls

gluconate-mediated repression and defines a new, independent pathway for

regulation of the tripyrrole antibiotic, prodigiosin, in

Serratia.

Microbiology

151

3833

3845

65. WilesSDouganGFrankelG

2005

Emergence of a ‘hyperinfectious’ bacterial state

after passage of Citrobacter rodentium through the host

gastrointestinal tract.

Cell Microbiol

7

1163

1172

66. WilesSClareSHarkerJHuettAYoungD

2005

Organ-specificity, colonization and clearance dynamics in

vivo following oral challenges with the murine pathogen

Citrobacter rodentium.

Cell Microbiol

7

459

67. SullivanMJPettyNKBeatsonSA

2011

Easyfig: a genome comparison visualiser.

Bioinformatics. In press

68. RutherfordKParkhillJCrookJHorsnellTRiceP

2000

Artemis: sequence visualization and annotation.

Bioinformatics

16

944

945

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#