#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Host Iron Withholding Demands Siderophore Utilization for to Survive Macrophage Killing


The fungal pathogen Candida glabrata has risen from an innocuous commensal to a major human pathogen that causes life-threatening infections with an associated mortality rate of up to 50%. The dramatic rise in the number of immunocompromised individuals from HIV infection, tuberculosis, and as a result of immunosuppressive regimens in cancer treatment and transplant interventions have created a new and hitherto unchartered niche for the proliferation of C. glabrata. Iron acquisition is a known microbial virulence determinant and human diseases of iron overload have been found to correlate with increased bacterial burden. Given that more than 2 billion people worldwide suffer from iron deficiency and that iron overload is one of the most common single-gene inherited diseases, it is important to understand whether host iron status may influence C. glabrata infectious disease progression. Here we identify Sit1 as the sole siderophore-iron transporter in C. glabrata and demonstrate that siderophore-mediated iron acquisition is critical for enhancing C. glabrata survival to the microbicidal activities of macrophages. Within the Sit1 transporter, we identify a conserved extracellular SIderophore Transporter Domain (SITD) that is critical for siderophore-mediated ability of C. glabrata to resist macrophage killing. Using macrophage models of human iron overload disease, we demonstrate that C. glabrata senses altered iron levels within the phagosomal compartment. Moreover, Sit1 functions as a determinant for C. glabrata to survive macrophage killing in a manner that is dependent on macrophage iron status. These studies suggest that host iron status is a modifier of infectious disease that modulates the dependence on distinct mechanisms of microbial Fe acquisition.


Vyšlo v časopise: Host Iron Withholding Demands Siderophore Utilization for to Survive Macrophage Killing. PLoS Pathog 7(3): e32767. doi:10.1371/journal.ppat.1001322
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001322

Souhrn

The fungal pathogen Candida glabrata has risen from an innocuous commensal to a major human pathogen that causes life-threatening infections with an associated mortality rate of up to 50%. The dramatic rise in the number of immunocompromised individuals from HIV infection, tuberculosis, and as a result of immunosuppressive regimens in cancer treatment and transplant interventions have created a new and hitherto unchartered niche for the proliferation of C. glabrata. Iron acquisition is a known microbial virulence determinant and human diseases of iron overload have been found to correlate with increased bacterial burden. Given that more than 2 billion people worldwide suffer from iron deficiency and that iron overload is one of the most common single-gene inherited diseases, it is important to understand whether host iron status may influence C. glabrata infectious disease progression. Here we identify Sit1 as the sole siderophore-iron transporter in C. glabrata and demonstrate that siderophore-mediated iron acquisition is critical for enhancing C. glabrata survival to the microbicidal activities of macrophages. Within the Sit1 transporter, we identify a conserved extracellular SIderophore Transporter Domain (SITD) that is critical for siderophore-mediated ability of C. glabrata to resist macrophage killing. Using macrophage models of human iron overload disease, we demonstrate that C. glabrata senses altered iron levels within the phagosomal compartment. Moreover, Sit1 functions as a determinant for C. glabrata to survive macrophage killing in a manner that is dependent on macrophage iron status. These studies suggest that host iron status is a modifier of infectious disease that modulates the dependence on distinct mechanisms of microbial Fe acquisition.


Zdroje

1. MoranC

GrussemeyerCA

SpaldingJR

BenjaminDKJr

ReedSD

2010 Comparison of costs, length of stay, and mortality associated with Candida glabrata and Candida albicans bloodstream infections. Am J Infect Control 38 78 80

2. TumbarelloM

SanguinettiM

TrecarichiEM

La SordaM

RossiM

2008 Fungaemia caused by Candida glabrata with reduced susceptibility to fluconazole due to altered gene expression: risk factors, antifungal treatment and outcome. J Antimicrob Chemother 62 1379 1385

3. KlevayMJ

HornDL

NeofytosD

PfallerMA

DiekemaDJ

2009 Initial treatment and outcome of Candida glabrata versus Candida albicans bloodstream infection. Diagn Microbiol Infect Dis 64 152 157

4. FidelPLJr

VazquezJA

SobelJD

1999 Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev 12 80 96

5. HalliwellB

GutteridgeJM

1985 The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med 8 89 193

6. HentzeMW

MuckenthalerMU

GalyB

CamaschellaC

2010 Two to tango: regulation of Mammalian iron metabolism. Cell 142 24 38

7. PhilpottCC

ProtchenkoO

2008 Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 7 20 27

8. BoukhalfaH

CrumblissAL

2002 Chemical aspects of siderophore mediated iron transport. Biometals 15 325 339

9. RaymondKN

DertzEA

KimSS

2003 Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci U S A 100 3584 3588

10. HaasH

EisendleM

TurgeonBG

2008 Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46 149 187

11. HeymannP

GeradsM

SchallerM

DromerF

WinkelmannG

2002 The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect Immun 70 5246 5255

12. WeissmanZ

ShemerR

ConibearE

KornitzerD

2008 An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans. Mol Microbiol 69 201 217

13. AndrewsNC

2008 Forging a field: the golden age of iron biology. Blood 112 219 230

14. CellierMF

CourvilleP

CampionC

2007 Nramp1 phagocyte intracellular metal withdrawal defense. Microbes Infect 9 1662 1670

15. KhanFA

FisherMA

KhakooRA

2007 Association of hemochromatosis with infectious diseases: expanding spectrum. Int J Infect Dis 11 482 487

16. WrightingDM

AndrewsNC

2008 Iron homeostasis and erythropoiesis. Curr Top Dev Biol 82 141 167

17. De DomenicoI

McVey WardD

KaplanJ

2008 Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat Rev Mol Cell Biol 9 72 81

18. BartonJC

ActonRT

2009 Hemochromatosis and Vibrio vulnificus wound infections. J Clin Gastroenterol 43 890 893

19. Cunningham-RundlesS

GiardinaPJ

GradyRW

CalifanoC

McKenzieP

2000 Effect of transfusional iron overload on immune response. J Infect Dis 182 Suppl 1 S115 121

20. SinghN

SunHY

2008 Iron overload and unique susceptibility of liver transplant recipients to disseminated disease due to opportunistic pathogens. Liver Transpl 14 1249 1255

21. KontoyiannisDP

ChamilosG

LewisRE

GiraltS

CortesJ

2007 Increased bone marrow iron stores is an independent risk factor for invasive aspergillosis in patients with high-risk hematologic malignancies and recipients of allogeneic hematopoietic stem cell transplantation. Cancer 110 1303 1306

22. MannsJM

MosserDM

BuckleyHR

1994 Production of a hemolytic factor by Candida albicans. Infect Immun 62 5154 5156

23. SantosR

BuissonN

KnightS

DancisA

CamadroJM

2003 Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Microbiology 149 579 588

24. ShermanDJ

MartinT

NikolskiM

CaylaC

SoucietJL

2009 Genolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes. Nucleic Acids Res 37 D550 554

25. AltschulSF

MaddenTL

SchafferAA

ZhangJ

ZhangZ

1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 3389 3402

26. HaasH

2003 Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 62 316 330

27. YunCW

TiedemanJS

MooreRE

PhilpottCC

2000 Siderophore-iron uptake in Saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters. J Biol Chem 275 16354 16359

28. KimY

YunCW

PhilpottCC

2002 Ferrichrome induces endosome to plasma membrane cycling of the ferrichrome transporter, Arn1p, in Saccharomyces cerevisiae. EMBO J 21 3632 3642

29. KimY

LampertSM

PhilpottCC

2005 A receptor domain controls the intracellular sorting of the ferrichrome transporter, ARN1. EMBO J 24 952 962

30. BlackburnNJ

RalleM

HassettR

KosmanDJ

2000 Spectroscopic analysis of the trinuclear cluster in the Fet3 protein from yeast, a multinuclear copper oxidase. Biochemistry 39 2316 2324

31. MestasJ

HughesCC

2004 Of mice and not men: differences between mouse and human immunology. J Immunol 172 2731 2738

32. HuangZL

FaillaML

2000 Copper deficiency suppresses effector activities of differentiated U937 cells. J Nutr 130 1536 1542

33. HuangZL

FaillaML

ReevesPG

2001 Differentiation of human U937 promonocytic cells is impaired by moderate copper deficiency. Exp Biol Med (Maywood) 226 222 228

34. FernandesA

PrezaGC

PhungY

De DomenicoI

KaplanJ

2009 The molecular basis of hepcidin-resistant hereditary hemochromatosis. Blood 114 437 443

35. GirelliD

De DomenicoI

BozziniC

CampostriniN

BustiF

2008 Clinical, pathological, and molecular correlates in ferroportin disease: a study of two novel mutations. J Hepatol 49 664 671

36. ZohnIE

De DomenicoI

PollockA

WardDM

GoodmanJF

2007 The flatiron mutation in mouse ferroportin acts as a dominant negative to cause ferroportin disease. Blood 109 4174 4180

37. De DomenicoI

WardDM

MusciG

KaplanJ

2007 Evidence for the multimeric structure of ferroportin. Blood 109 2205 2209

38. Iglesias-OsmaC

Gonzalez-VillaronL

San MiguelJF

CaballeroMD

VazquezL

1995 Iron metabolism and fungal infections in patients with haematological malignancies. J Clin Pathol 48 223 225

39. KarpJE

MerzWG

1986 Association of reduced total iron binding capacity and fungal infections in leukemic granulocytopenic patients. J Clin Oncol 4 216 220

40. DrakesmithH

PrenticeA

2008 Viral infection and iron metabolism. Nat Rev Microbiol 6 541 552

41. PortoG

De SousaM

2007 Iron overload and immunity. World J Gastroenterol 13 4707 4715

42. WhiteC

LeeJ

KambeT

FritscheK

PetrisMJ

2009 A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem 284 33949 33956

43. LesuisseE

KnightSA

CamadroJM

DancisA

2002 Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae. Yeast 19 329 340

44. ParadkarPN

De DomenicoI

DurchfortN

ZohnI

KaplanJ

2008 Iron depletion limits intracellular bacterial growth in macrophages. Blood 112 866 874

45. BullenJJ

SpaldingPB

WardCG

GutteridgeJM

1991 Hemochromatosis, iron and septicemia caused by Vibrio vulnificus. Arch Intern Med 151 1606 1609

46. GhannoumMA

JurevicRJ

MukherjeePK

CuiF

SikaroodiM

Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6 e1000713

47. SchrettlM

BignellE

KraglC

SabihaY

LossO

2007 Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog 3 1195 1207

48. SchrettlM

BignellE

KraglC

JoechlC

RogersT

2004 Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med 200 1213 1219

49. WatermanSR

HachamM

HuG

ZhuX

ParkYD

2007 Role of a CUF1/CTR4 copper regulatory axis in the virulence of Cryptococcus neoformans. J Clin Invest 117 794 802

50. DengY

GuoY

WatsonH

AuWC

Shakoury-ElizehM

2009 Gga2 mediates sequential ubiquitin-independent and ubiquitin-dependent steps in the trafficking of ARN1 from the trans-Golgi network to the vacuole. J Biol Chem 284 23830 23841

51. HuCJ

BaiC

ZhengXD

WangYM

WangY

2002 Characterization and functional analysis of the siderophore-iron transporter CaArn1p in Candida albicans. J Biol Chem 277 30598 30605

52. EdlindTD

HenryKW

VermitskyJP

EdlindMP

RajS

2005 Promoter-dependent disruption of genes: simple, rapid, and specific PCR-based method with application to three different yeast. Curr Genet 48 117 125

53. AusubelFM

BrentR

KingstonRE

MooreDD

SeidmanJG

SmithJA

StruhlK

1995 Current protocols in molecular biology. New York Greene Publishing Associates and Wiley-Interscience

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#