#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Stealth Episome: Suppression of Gene Expression on the Excised Genomic Island PPHGI-1 from pv.


Pseudomonas syringae pv. phaseolicola is the causative agent of halo blight in the common bean, Phaseolus vulgaris. P. syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene avrPphB (syn. hopAR1), which resides on PPHGI-1, a 106 kb genomic island. Loss of PPHGI-1 from P. syringae pv. phaseolicola 1302A following exposure to the hypersensitive resistance response (HR) leads to the evolution of strains with altered virulence. Here we have used fluorescent protein reporter systems to gain insight into the mobility of PPHGI-1. Confocal imaging of dual-labelled P. syringae pv. phaseolicola 1302A strain, F532 (dsRFP in chromosome and eGFP in PPHGI-1), revealed loss of PPHGI-1::eGFP encoded fluorescence during plant infection and when grown in vitro on extracted leaf apoplastic fluids. Fluorescence-activated cell sorting (FACS) of fluorescent and non-fluorescent PPHGI-1::eGFP F532 populations showed that cells lost fluorescence not only when the GI was deleted, but also when it had excised and was present as a circular episome. In addition to reduced expression of eGFP, quantitative PCR on sub-populations separated by FACS showed that transcription of other genes on PPHGI-1 (avrPphB and xerC) was also greatly reduced in F532 cells harbouring the excised PPHGI-1::eGFP episome. Our results show how virulence determinants located on mobile pathogenicity islands may be hidden from detection by host surveillance systems through the suppression of gene expression in the episomal state.


Vyšlo v časopise: The Stealth Episome: Suppression of Gene Expression on the Excised Genomic Island PPHGI-1 from pv.. PLoS Pathog 7(3): e32767. doi:10.1371/journal.ppat.1002010
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002010

Souhrn

Pseudomonas syringae pv. phaseolicola is the causative agent of halo blight in the common bean, Phaseolus vulgaris. P. syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene avrPphB (syn. hopAR1), which resides on PPHGI-1, a 106 kb genomic island. Loss of PPHGI-1 from P. syringae pv. phaseolicola 1302A following exposure to the hypersensitive resistance response (HR) leads to the evolution of strains with altered virulence. Here we have used fluorescent protein reporter systems to gain insight into the mobility of PPHGI-1. Confocal imaging of dual-labelled P. syringae pv. phaseolicola 1302A strain, F532 (dsRFP in chromosome and eGFP in PPHGI-1), revealed loss of PPHGI-1::eGFP encoded fluorescence during plant infection and when grown in vitro on extracted leaf apoplastic fluids. Fluorescence-activated cell sorting (FACS) of fluorescent and non-fluorescent PPHGI-1::eGFP F532 populations showed that cells lost fluorescence not only when the GI was deleted, but also when it had excised and was present as a circular episome. In addition to reduced expression of eGFP, quantitative PCR on sub-populations separated by FACS showed that transcription of other genes on PPHGI-1 (avrPphB and xerC) was also greatly reduced in F532 cells harbouring the excised PPHGI-1::eGFP episome. Our results show how virulence determinants located on mobile pathogenicity islands may be hidden from detection by host surveillance systems through the suppression of gene expression in the episomal state.


Zdroje

1. FischerWWindhagerLRohrerSZeillerMKarnholzA 2010 Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. Nucleic Acids Res 38 6089 101

2. PaauwALeverstein-van HallMAVerhoefJFluitAC 2010 Evolution in Quantum Leaps: Multiple Combinatorial Transfers of HPI and Other Genetic Modules in Enterobacteriaceae. PLoS ONE 5 e8662

3. JuhasMvan der MeerJRGaillardMHardingRMHoodDW 2009 Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33 376 93

4. BarashIManulis-SassonS 2009 Recent evolution of bacterial pathogens: the gall-forming Pantoea agglomerans case. Annu Rev Phytopathol 47 133 52

5. TaylorJDTeversonDMAllenDJPastor-CorralesMA 1996 Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol 45 469 478

6. PitmanARJacksonRWMansfieldJWKaitellVThwaitesR 2005 Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Curr Biol 15 2230 2235

7. MansfieldJW 2009 From bacterial avirulence genes to effector functions via the hrp delivery system: an overview of 25 years of progress in our understanding of plant innate immunity. Mol Plant Pathol 10 721 34

8. GuttmanDS 2009 Bacterial Evolution: Dynamic Genomes and the Power of Transformation. Curr Biol 19 R857 859

9. VencatoMTianFAlfanoJRBuellCRCartinhourS 2006 Bioinformatics-enabled identification of the HrpL regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448A. Mol Plant Microbe Interact 19 1193 206

10. JonesJDGDanglJL 2006 The plant immune system. Nature Rev 444 323 329

11. CunnacSLindebergMCollmerA 2009 Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol 12 53 60

12. KvitkoBHParkDHVelásquezACWeiCFRussellAB 2009 Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog e1000388

13. LindebergMCartinhourSMyersCRSchechterLMSchneiderDJ 2006 Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains. Mol Plant Microbe Interact 19 1151 8

14. AlfanoJRCollmerA 2004 Type III secretion system effector proteins: Double agents in bacteria disease. Annu Rev Phytopathol 42 385 414

15. HackerJCarnielE 2001 Ecological fitness, genomic islands and bacterial pathogenicity: A Darwinian view of the evolution of microbes. EMBO Rep 2 376 381

16. Van der MeerJRSentchiloV 2003 Genomic islands and the evolution of catabolic pathways in bacteria. Curr Opin Biotechnol 14 248 254

17. LovellHCMansfieldJWGodfreySACJacksonRWHancockJT 2009 Bacterial evolution by genomic island transfer occurs via DNA transformation in planta. Curr Biol 19 1586 1590

18. JacksonRWMansfieldJWArnoldDLSesmaAPaynterCD 2000 Excision from tRNA genes of a large chromosomal region, carrying avrPphB, associated with race change in the bean pathogen, Pseudomonas syringae pv. phaseolicola. Mol Microbiol 38 186 197

19. LovellHCJacksonRWMansfieldJWGodfreySACHancockJT 2011 In planta conditions induce genomic changes in Pseudomonas syringae pathovar phaseolicola. Mol Plant Pathol 12 167 76

20. RicoAPrestonGM 2008 Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant Microbe Interact 21 269 282

21. ArnoldDLJacksonRWWaterfieldNRMansfieldJW 2007 Evolution of microbial virulence: the benefits of stress. Trends Genet 23 293 300

22. GodfreySACMansfieldJWCorryDSLovellHCJacksonRW 2010 Confocal Imaging of Pseudomonas syringae pv. phaseolicola Colony Development in Bean Reveals Reduced Multiplication of strains containing the Genomic Island PPHGI-1. Mol Plant Microbe Interact 23 1294 1302

23. StewartPS 1996 Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40 2517 2522

24. StoodleyPSauerKDaviesDGCostertonJW 2002 Biofilms as Complex Differentiated Communities. Annu Rev Microbiol 56 187 209

25. CróinínTÓCarrollRKKellyADormanCJ 2006 Roles for DNA supercoiling and the Fis protein in modulating expression of virulence genes during intracellular growth of Salmonella enterica serovar Typhimurium. Mol Microbiol 62 869 882

26. DormanCJBhriainNNHigginsCF 1990 DNA supercoiling and environmental regulation of virulence gene expression in Shigella flexneri. Nature 344 789 792

27. DormanCJDeighanP 2003 Regulation of gene expression by histone-like proteins in bacteria. Curr Opin Genet Dev 13 179 184

28. DormanCJ 2004 H-NS: A Universal Regulator for a Dynamic Genome. Nat Rev Microbiol 2 391 400

29. KiewitzCLarbigKKlockgetherJWeinelCTummlerB 2000 Monitoring genome evolution ex vivo: reversible chromosomal integration of a 106 kb plasmid at two tRNALys gene loci in sequential Pseudomonas aeruginosa airway isolates. Microbiology 146 2365 2373

30. SentchiloVCzechowskaKPradervandNMinoiaMMiyazakiR 2009 Intracellular excision and reintegration dynamics of the ICE clc genomic island of Pseudomonas knackmussii sp. strain B13. Mol Microbiol 72 1293 1306

31. KingEOWardMKRaneyDE 1954 Two simple media for the demonstration of pyocyanin and fluorescen. J Lab Clin Med 44 301 307

32. SambrookJFritschEFManiatisT 1989 Molecular cloning: a laboratory manual. USA Cold Spring Harbor Laboratory Press

33. MoultonPJVivianAHunterPJTaylorJD 1993 Changes in cultivar-specificity toward pea can result from transfer of plasmid RP4 and other incompatibility group P1 replicons to Pseudomonas syringae pv. pisi. J Gen Microbiol 139 3149 3155

34. HortenRMHuntHDHoSNPullenJKPeaseLR 1989 Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77 61 68

35. SchäferATauchAJägerWKalinowskiJThierbachG 1994 Small mobilizable multi-purpose cloning vectors derived from the E. coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145 69 73

36. LambertsenLSternbergCMolinS 2004 Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6 726 732

37. ThrelfallEJHallMLRoweB 1986 Salmonella gold-coast from outbreaks of food-poisoning in the British Isles can be differentiated by plasmid profiles. J Hyg (Lond) 97 115 22

38. FigurskiDHHelinskiDR 1979 Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function derived in trans. Proc Natl Acad Sci USA 76 1648 1652

39. LambertsenLSternbergCMolinS 2004 Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6 726 32

40. BaoYLiesDPFuHRobertsGP 1991 An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene 109 167 8

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#