Insight into the Mechanisms of Adenovirus Capsid Disassembly from Studies of Defensin Neutralization


Defensins are effectors of the innate immune response with potent antibacterial activity. Their role in antiviral immunity, particularly for non-enveloped viruses, is poorly understood. We recently found that human alpha-defensins inhibit human adenovirus (HAdV) by preventing virus uncoating and release of the endosomalytic protein VI during cell entry. Consequently, AdV remains trapped in the endosomal/lysosomal pathway rather than trafficking to the nucleus. To gain insight into the mechanism of defensin-mediated neutralization, we analyzed the specificity of the AdV-defensin interaction. Sensitivity to alpha-defensin neutralization is a common feature of HAdV species A, B1, B2, C, and E, whereas species D and F are resistant. Thousands of defensin molecules bind with low micromolar affinity to a sensitive serotype, but only a low level of binding is observed to resistant serotypes. Neutralization is dependent upon a correctly folded defensin molecule, suggesting that specific molecular interactions occur with the virion. CryoEM structural studies and protein sequence analysis led to a hypothesis that neutralization determinants are located in a region spanning the fiber and penton base proteins. This model was supported by infectivity studies using virus chimeras comprised of capsid proteins from sensitive and resistant serotypes. These findings suggest a mechanism in which defensin binding to critical sites on the AdV capsid prevents vertex removal and thereby blocks subsequent steps in uncoating that are required for release of protein VI and endosomalysis during infection. In addition to informing the mechanism of defensin-mediated neutralization of a non-enveloped virus, these studies provide insight into the mechanism of AdV uncoating and suggest new strategies to disrupt this process and inhibit infection.


Vyšlo v časopise: Insight into the Mechanisms of Adenovirus Capsid Disassembly from Studies of Defensin Neutralization. PLoS Pathog 6(6): e32767. doi:10.1371/journal.ppat.1000959
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000959

Souhrn

Defensins are effectors of the innate immune response with potent antibacterial activity. Their role in antiviral immunity, particularly for non-enveloped viruses, is poorly understood. We recently found that human alpha-defensins inhibit human adenovirus (HAdV) by preventing virus uncoating and release of the endosomalytic protein VI during cell entry. Consequently, AdV remains trapped in the endosomal/lysosomal pathway rather than trafficking to the nucleus. To gain insight into the mechanism of defensin-mediated neutralization, we analyzed the specificity of the AdV-defensin interaction. Sensitivity to alpha-defensin neutralization is a common feature of HAdV species A, B1, B2, C, and E, whereas species D and F are resistant. Thousands of defensin molecules bind with low micromolar affinity to a sensitive serotype, but only a low level of binding is observed to resistant serotypes. Neutralization is dependent upon a correctly folded defensin molecule, suggesting that specific molecular interactions occur with the virion. CryoEM structural studies and protein sequence analysis led to a hypothesis that neutralization determinants are located in a region spanning the fiber and penton base proteins. This model was supported by infectivity studies using virus chimeras comprised of capsid proteins from sensitive and resistant serotypes. These findings suggest a mechanism in which defensin binding to critical sites on the AdV capsid prevents vertex removal and thereby blocks subsequent steps in uncoating that are required for release of protein VI and endosomalysis during infection. In addition to informing the mechanism of defensin-mediated neutralization of a non-enveloped virus, these studies provide insight into the mechanism of AdV uncoating and suggest new strategies to disrupt this process and inhibit infection.


Zdroje

1. SelstedME

OuelletteAJ

2005 Mammalian defensins in the antimicrobial immune response. Nat Immunol 6 551 557

2. LehrerRI

2007 Multispecific myeloid defensins. Curr Opin Hematol 14 16 21

3. BrogdenKA

2005 Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3 238 250

4. KlotmanME

ChangTL

2006 Defensins in innate antiviral immunity. Nat Rev Immunol 6 447 456

5. HazratiE

GalenB

LuW

WangW

OuyangY

2006 Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J Immunol 177 8658 8666

6. WangW

OwenSM

RudolphDL

ColeAM

HongT

2004 Activity of alpha- and theta-defensins against primary isolates of HIV-1. J Immunol 173 515 520

7. YasinB

WangW

PangM

CheshenkoN

HongT

2004 Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J Virol 78 5147 5156

8. BastianA

SchaferH

2001 Human alpha-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul Pept 101 157 161

9. BuckCB

DayPM

ThompsonCD

LubkowskiJ

LuW

2006 Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci U S A 103 1516 1521

10. DuganAS

MaginnisMS

JordanJA

GasparovicML

ManleyK

2008 Human alpha-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J Biol Chem 283 31125 31132

11. GroppR

FryeM

WagnerTO

BargonJ

1999 Epithelial defensins impair adenoviral infection: implication for adenovirus-mediated gene therapy. Hum Gene Ther 10 957 964

12. HarveySA

RomanowskiEG

YatesKA

GordonYJ

2005 Adenovirus-directed ocular innate immunity: the role of conjunctival defensin-like chemokines (IP-10, I-TAC) and phagocytic human defensin-alpha. Invest Ophthalmol Vis Sci 46 3657 3665

13. SmithJG

NemerowGR

2008 Mechanism of adenovirus neutralization by human alpha-defensins. Cell Host Microbe 3 11 19

14. Virella-LowellI

PoirierA

ChesnutKA

BrantlyM

FlotteTR

2000 Inhibition of recombinant adeno-associated virus (rAAV) transduction by bronchial secretions from cystic fibrosis patients. Gene Ther 7 1783 1789

15. BenkoM

HarrachB

BothGW

RussellWC

AdairBM

2005 Family Adenoviridae.

FauquetCM

MayoMA

ManiloffJ

DesselbergerU

BallLA

Virus Taxonomy VIIIth Report of the International Committee on Taxonomy of Viruses New York Elsevier 213 228

16. JonesMS2nd

HarrachB

GanacRD

GozumMM

Dela CruzWP

2007 New adenovirus species found in a patient presenting with gastroenteritis. J Virol 81 5978 5984

17. WalshMP

ChintakuntlawarA

RobinsonCM

MadischI

HarrachB

2009 Evidence of molecular evolution driven by recombination events influencing tropism in a novel human adenovirus that causes epidemic keratoconjunctivitis. PLoS One 4 e5635

18. WalshMP

SetoJ

JonesMS

ChodoshJ

XuW

2010 Computational analysis identifies human adenovirus type 55 as a re-emergent acute respiratory disease pathogen. J Clin Microbiol 48 991 993

19. ArnbergN

2009 Adenovirus receptors: implications for tropism, treatment and targeting. Rev Med Virol 19 165 178

20. StewartPL

NemerowGR

2007 Cell integrins: commonly used receptors for diverse viral pathogens. Trends Microbiol 15 500 507

21. GreberUF

WillettsM

WebsterP

HeleniusA

1993 Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75 477 486

22. NakanoMY

BouckeK

SuomalainenM

StidwillRP

GreberUF

2000 The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. J Virol 74 7085 7095

23. WiethoffCM

WodrichH

GeraceL

NemerowGR

2005 Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol 79 1992 2000

24. LeopoldPL

CrystalRG

2007 Intracellular trafficking of adenovirus: many means to many ends. Adv Drug Deliv Rev 59 810 821

25. RajabiM

de LeeuwE

PazgierM

LiJ

LubkowskiJ

2008 The conserved salt bridge in human alpha-defensin 5 is required for its precursor processing and proteolytic stability. J Biol Chem 283 21509 21518

26. WuZ

LiX

de LeeuwE

EricksenB

LuW

2005 Why is the Arg5-Glu13 salt bridge conserved in mammalian alpha-defensins? J Biol Chem 280 43039 43047

27. MaemotoA

QuX

RosengrenKJ

TanabeH

Henschen-EdmanA

2004 Functional analysis of the alpha-defensin disulfide array in mouse cryptdin-4. J Biol Chem 279 44188 44196

28. WuZ

HooverDM

YangD

BoulegueC

SantamariaF

2003 Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc Natl Acad Sci U S A 100 8880 8885

29. WeiG

de LeeuwE

PazgierM

YuanW

ZouG

2009 Through the looking glass, mechanistic insights from enantiomeric human defensins. J Biol Chem 284 29180 29192

30. SabanSD

NepomucenoRR

GrittonLD

NemerowGR

StewartPL

2005 CryoEM structure at 9A resolution of an adenovirus vector targeted to hematopoietic cells. J Mol Biol 349 526 537

31. SabanSD

SilvestryM

NemerowGR

StewartPL

2006 Visualization of alpha-helices in a 6-angstrom resolution cryoelectron microscopy structure of adenovirus allows refinement of capsid protein assignments. J Virol 80 12049 12059

32. RuxJJ

KuserPR

BurnettRM

2003 Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution x-ray crystallographic, molecular modeling, and sequence-based methods. J Virol 77 9553 9566

33. ZubietaC

SchoehnG

ChroboczekJ

CusackS

2005 The structure of the human adenovirus 2 penton. Mol Cell 17 121 135

34. KalyuzhniyO

Di PaoloNC

SilvestryM

HofherrSE

BarryMA

2008 Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci U S A 105 5483 5488

35. WaddingtonSN

McVeyJH

BhellaD

ParkerAL

BarkerK

2008 Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 132 397 409

36. NguyenEK

NemerowGR

SmithJG

2010 Direct evidence from single-cell analysis that human alpha-defensins block adenovirus uncoating to neutralize nnfection. J Virol 84 4041 4049

37. RoyS

ClawsonDS

CalcedoR

LebherzC

SanmiguelJ

2005 Use of chimeric adenoviral vectors to assess capsid neutralization determinants. Virology 333 207 214

38. YouilR

TonerTJ

SuQ

ChenM

TangA

2002 Hexon gene switch strategy for the generation of chimeric recombinant adenovirus. Hum Gene Ther 13 311 320

39. KonzJO

LivingoodRC

BettAJ

GoerkeAR

LaskaME

2005 Serotype specificity of adenovirus purification using anion-exchange chromatography. Hum Gene Ther 16 1346 1353

40. LehrerRI

JungG

RuchalaP

WangW

MicewiczED

2009 Human alpha-defensins inhibit hemolysis mediated by cholesterol-dependent cytolysins. Infect Immun 77 4028 4040

41. ManningJS

HackettAJ

DarbyNBJr

1971 Effect of polycations on sensitivity of BALD-3T3 cells to murine leukemia and sarcoma virus infectivity. Appl Microbiol 22 1162 1163

42. HillCP

YeeJ

SelstedME

EisenbergD

1991 Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science 251 1481 1485

43. SzykA

WuZ

TuckerK

YangD

LuW

2006 Crystal structures of human alpha-defensins HNP4, HD5, and HD6. Protein Sci 15 2749 2760

44. LehrerRI

JungG

RuchalaP

AndreS

GabiusHJ

2009 Multivalent binding of carbohydrates by the human alpha-defensin, HD5. J Immunol 183 480 490

45. GhoshD

PorterE

ShenB

LeeSK

WilkD

2002 Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3 583 590

46. GanzT

SelstedME

SzklarekD

HarwigSS

DaherK

1985 Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76 1427 1435

47. GanzT

2003 Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3 710 720

48. GanzT

1987 Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes. Infect Immun 55 568 571

49. FaurschouM

SorensenOE

JohnsenAH

AskaaJ

BorregaardN

2002 Defensin-rich granules of human neutrophils: characterization of secretory properties. Biochim Biophys Acta 1591 29 35

50. CotterMJ

ZaissAK

MuruveDA

2005 Neutrophils interact with adenovirus vectors via Fc receptors and complement receptor 1. J Virol 79 14622 14631

51. SherwoodV

BurgertHG

ChenYH

SangheraS

KatafigiotisS

2007 Improved growth of enteric adenovirus type 40 in a modified cell line that can no longer respond to interferon stimulation. J Gen Virol 88 71 76

52. RobinsonCM

ShariatiF

ZaitshikJ

GillaspyAF

DyerDW

2009 Human adenovirus type 19: Genomic and bioinformatics analysis of a keratoconjunctivitis isolate. Virus Res 139 122 126

53. SmithTA

IdamakantiN

RollenceML

Marshall-NeffJ

KimJ

2003 Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum Gene Ther 14 777 787

54. WarmingS

CostantinoN

CourtDL

JenkinsNA

CopelandNG

2005 Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33 e36

55. WodrichH

HenaffD

JammartB

Segura-MoralesC

SeelmeirS

2010 A Capsid-Encoded PPxY-Motif Facilitates Adenovirus Entry. PLoS Pathog 6 e1000808

56. CauthenAN

WeltonAR

SpindlerKR

2007 Construction of mouse adenovirus type 1 mutants. Methods Mol Med 130 41 59

57. EvansRK

NawrockiDK

IsopiLA

WilliamsDM

CasimiroDR

2004 Development of stable liquid formulations for adenovirus-based vaccines. J Pharm Sci 93 2458 2475

58. de LeeuwE

BurksSR

LiX

KaoJP

LuW

2007 Structure-dependent functional properties of human defensin 5. FEBS Lett 581 515 520

59. DeLanoWL

2008 The PyMOL Molecular Graphics System Palo Alto, , CA,, USA DeLano Scientific LLC. pp. http://www.pymol.org

60. RasbandWS

1997–2009 ImageJ Bethesda, , MD U.S. National Institutes of Health. pp. http://rsb.info.nih.gov/ij/

61. NepomucenoRR

PacheL

NemerowGR

2007 Enhancement of gene transfer to human myeloid cells by adenovirus-fiber complexes. Mol Ther 15 571 578

62. HenryLJ

XiaD

WilkeME

DeisenhoferJ

GerardRD

1994 Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli. J Virol 68 5239 5246

63. ShiJ

WilliamsDR

StewartPL

2008 A Script-Assisted Microscopy (SAM) package to improve data acquisition rates on FEI Tecnai electron microscopes equipped with Gatan CCD cameras. J Struct Biol 164 166 169

64. MindellJA

GrigorieffN

2003 Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol 142 334 347

65. GrigorieffN

2007 FREALIGN: high-resolution refinement of single particle structures. J Struct Biol 157 117 125

66. PettersenEF

GoddardTD

HuangCC

CouchGS

GreenblattDM

2004 UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25 1605 1612

67. LudtkeSJ

BaldwinPR

ChiuW

1999 EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128 82 97

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Eozinofilní granulomatóza s polyangiitidou
nový kurz
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa