Modifies the Tsetse Salivary Composition, Altering the Fly Feeding Behavior That Favors Parasite Transmission


Tsetse flies are the notorious transmitters of African trypanosomiasis, a disease caused by the Trypanosoma parasite that affects humans and livestock on the African continent. Metacyclic infection rates in natural tsetse populations with Trypanosoma brucei, including the two human-pathogenic subspecies, are very low, even in epidemic situations. Therefore, the infected fly/host contact frequency is a key determinant of the transmission dynamics. As an obligate blood feeder, tsetse flies rely on their complex salivary potion to inhibit host haemostatic reactions ensuring an efficient feeding. The results of this experimental study suggest that the parasite might promote its transmission through manipulation of the tsetse feeding behavior by modifying the saliva composition. Indeed, salivary gland Trypanosoma brucei-infected flies display a significantly prolonged feeding time, thereby enhancing the likelihood of infecting multiple hosts during the process of a single blood meal cycle. Comparison of the two major anti-haemostatic activities i.e. anti-platelet aggregation and anti-coagulation activity in these flies versus non-infected tsetse flies demonstrates a significant suppression of these activities as a result of the trypanosome-infection status. This effect was mainly related to the parasite-induced reduction in salivary gland gene transcription, resulting in a strong decrease in protein content and related biological activities. Additionally, the anti-thrombin activity and inhibition of thrombin-induced coagulation was even more severely hampered as a result of the trypanosome infection. Indeed, while naive tsetse saliva strongly inhibited human thrombin activity and thrombin-induced blood coagulation, saliva from T. brucei-infected flies showed a significantly enhanced thrombinase activity resulting in a far less potent anti-coagulation activity. These data clearly provide evidence for a trypanosome-mediated modification of the tsetse salivary composition that results in a drastically reduced anti-haemostatic potential and a hampered feeding performance which could lead to an increase of the vector/host contact and parasite transmission in field conditions.


Vyšlo v časopise: Modifies the Tsetse Salivary Composition, Altering the Fly Feeding Behavior That Favors Parasite Transmission. PLoS Pathog 6(6): e32767. doi:10.1371/journal.ppat.1000926
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000926

Souhrn

Tsetse flies are the notorious transmitters of African trypanosomiasis, a disease caused by the Trypanosoma parasite that affects humans and livestock on the African continent. Metacyclic infection rates in natural tsetse populations with Trypanosoma brucei, including the two human-pathogenic subspecies, are very low, even in epidemic situations. Therefore, the infected fly/host contact frequency is a key determinant of the transmission dynamics. As an obligate blood feeder, tsetse flies rely on their complex salivary potion to inhibit host haemostatic reactions ensuring an efficient feeding. The results of this experimental study suggest that the parasite might promote its transmission through manipulation of the tsetse feeding behavior by modifying the saliva composition. Indeed, salivary gland Trypanosoma brucei-infected flies display a significantly prolonged feeding time, thereby enhancing the likelihood of infecting multiple hosts during the process of a single blood meal cycle. Comparison of the two major anti-haemostatic activities i.e. anti-platelet aggregation and anti-coagulation activity in these flies versus non-infected tsetse flies demonstrates a significant suppression of these activities as a result of the trypanosome-infection status. This effect was mainly related to the parasite-induced reduction in salivary gland gene transcription, resulting in a strong decrease in protein content and related biological activities. Additionally, the anti-thrombin activity and inhibition of thrombin-induced coagulation was even more severely hampered as a result of the trypanosome infection. Indeed, while naive tsetse saliva strongly inhibited human thrombin activity and thrombin-induced blood coagulation, saliva from T. brucei-infected flies showed a significantly enhanced thrombinase activity resulting in a far less potent anti-coagulation activity. These data clearly provide evidence for a trypanosome-mediated modification of the tsetse salivary composition that results in a drastically reduced anti-haemostatic potential and a hampered feeding performance which could lead to an increase of the vector/host contact and parasite transmission in field conditions.


Zdroje

1. Van Den AbbeeleJ

ClaesY

Van BockstaeleD

Le RayD

CoosemansM

1999 Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis. Parasitol 118 469 478

2. VickermanK

1985 Developmental cycles and biology of pathogenic trypanosomes. Br Med Bull 41 105 114

3. CaljonG

Van Den AbbeeleJ

StijlemansB

CoosemansM

De BaetselierP

2006 Tsetse fly saliva accelerates the onset of Trypanosoma brucei infection in a mouse model associated with a reduced host inflammatory response. Infect Immun 74 6324 6330

4. RibeiroJMC

FrancischettiIMB

2003 Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entom 48 73 88

5. CappelloM

LiS

ChenXO

LiCB

HarrisonL

1998 Tsetse thrombin inhibitor: Bloodmeal-induced expression of an anticoagulant in salivary glands and gut tissue of Glossina morsitans morsitans. Proc Natl Acad Sci USA 95 14290 14295

6. CappelloM

BergumPW

VlasukGP

FurmidgeBA

PritchardDI

1996 Isolation and characterization of the tsetse thrombin inhibitor: A potent antithrombotic peptide from the saliva of Glossina morsitans morsitans. Am J Trop Med Hyg 54 475 480

7. CaljonG

De RidderK

de BaetselierP

CoosemansM

Van Den AbbeeleJ

2010 Identification of a tsetse salivary protein with dual inhibitory action on human platelet aggregation. PLoS One 5 doi:101371/journal.pone.0009671 e9671

8. LiS

KwonJ

AksoyS

2001 Characterization of genes expressed in the salivary glands of the tsetse fly, Glossina morsitans morsitans. Insect Mol Biol 10 69 76

9. LiS

AksoyS

2000 A family of genes with growth factor and adenosine deaminase similarity are preferentially expressed in the salivary glands of Glossina m. morsitans. Gene 252 83 93

10. CaljonG

BroosK

De GoeyseI

De RidderK

SternbergJM

2009 Identification of a functional Antigen5-related allergen in the saliva of a blood feeding insect, the tsetse fly. Insect Biochem Mol Biol 39 332 341

11. LefèvreT

KoellaJC

RenaudF

HurdH

BironDG

2006 New prospects for research on manipulation of insect vectors by pathogens. PLoS Pathog 2 e72

12. LefèvreT

ThomasF

2008 Behind the scene, something else is pulling the strings: Emphasizing parasitic manipulation in vector-borne diseases. Infect Genet Evol 8 504 519

13. RogersME

BatesPA

2007 Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PloS Pathog 3 e91

14. RossignolPA

RibeiroJMC

SpielmanA

1984 Increased intradermal probing time in sporozoite-infected mosquitoes. Am J Trop Med Hyg 33 17 20

15. SchwartzA

KoellaJC

2001 Trade-offs, conflicts of interest and manipulation in Plasmodium-mosquito interactions. Trends Parasitol 17 189 194

16. KoellaJC

SorensenFL

AndersonRA

1998 The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc R Soc Lond Series B 265 763 768

17. MolyneuxDH

JefferiesD

1986 Feeding behavior of pathogen-infected vectors. Parasitol 92 721 736

18. HurdH

2003 Manipulation of medically important insect vectors by their parasites. Annu Rev Entom 48 141 161

19. StierhofYD

BatesPA

JacobsonRL

RogersME

SchleinY

1999 Filamentous proteophosphoglycan secreted by Leishmania promastigotes forms gel-like three-dimensional networks that obstruct the digestive tract of infected sandfly vectors. Eur J Cell Biol 78 675 689

20. JarrettCO

DeakE

IsherwoodKE

OystonPC

FischerER

2004 Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis 190 783 792

21. ThevenazPH

HeckerH

1980 Distribution and attachment of Trypanosoma (Nannomonas) congolense in the proximal part of the proboscis of Glossina morsitans morsitans. Acta Tropica 37 163 175

22. MolooSK

DarF

1985 Probing by Glossina morsitans centralis infected with pathogenic Trypanosoma species. Trans R Soc Trop Med Hyg 79 119

23. MolyneuxDH

JenniL

1981 Mechanoreceptors, feeding behavior and trypanosome transmission in Glossina. Trans R Soc Trop Med Hyg 75 160 163

24. EvansDA

EllisDS

StamfordS

1979 Ultrastructural studies of certain aspects of the development of Trypanosoma congolense in Glossina morsitans morsitans. J Protozool 26 557 563

25. MolyneuxDH

LavinDR

ElceB

1979 Possible relationship between salivarian trypanosomes and Glossina labrum mechanoreceptors. Ann Trop Med Parasitol 73 287 290

26. VickermanK

1973 Mode of attachment of Trypanosoma vivax in proboscis of tsetse fly Glossina fuscipes - Ultrastructural study of epimastigote stage of trypanosome. J Protozool 20 394 404

27. JenniL

MolyneuxDH

LiveseyJL

GalunR

1980 Feeding behavior of tsetse flies infected with salivarian trypanosomes. Nat 283 383 385

28. MolooSK

1983 Feeding behavior of Glossina morsitans morsitans infected with Trypanosoma vivax, T.congolense or T.brucei. Parasitol 86 51 56

29. LehaneMJ

2005 The biology of blood-sucking in insects. New York Cambridge University Press 321

30. Van Den AbbeeleJ

CaljonG

DierickJF

MoensL

De RidderK

2007 The Glossina morsitans tsetse fly saliva: General characteristics and identification of novel salivary proteins. Insect Biochem Mol Biol 37 1075 1085

31. RobertsLW

1981 Probing by Glossina morsitans morsitans and transmission of Trypanosoma (Nannomonas) congolense. Am J Trop Med Hyg 30 948 951

32. LiveseyJL

MolyneuxDH

JenniL

1980 Mechanoreceptor-trypanosome interactions in the labrum of Glossina: fluid mechanics. Acta Tropica 37 151 161

33. RibeiroJMC

RossignolPA

SpielmanA

1985 Salivary gland apyrase determines probing time in anopheline mosquitos. J Insect Physiol 31 689 692

34. MantMJ

ParkerKR

1981 Two platelet aggregation inhibitors in tsetse (Glossina) saliva with studies of roles of thrombin and citrate in in vitro platelet aggregation. Br J Haematol 48 601 608

35. ChampagneDE

2005 Antihaemostatic molecules from saliva of blood-feeding arthropods. Pathophysiol Haemost Thromb 34 221 227

36. HsiaoG

LinKH

ChangY

ChenTL

TzuNH

2005 Protective mechanisms of inosine in platelet activation and cerebral ischemic damage. Arterioscler Thromb Vasc Biol 25 1998 2004

37. AdamsTE

HuntingtonJA

2006 Thrombin-cofactor interactions. Structural insights into regulatory mechanisms. Arterioscler Thromb Vasc Biol 26 1738 1745

38. Alves-SilvaJ

RibeiroJMC

Van Den AbbeeleJ

AttardoG

HaoZ

2010 An insight into the sialome of Glossina morsitans morsitans. BMC Genomics 11 213 doi:10.1186/1471-2164-11-213

39. SchofieldS

TorrSJ

2002 A comparison of the feeding behavior of tsetse and stable flies. Med Vet Entomol 16 177 185

40. MorlaisI

GrebautP

BodoJM

DjohaS

CunyG

1998 Characterization of trypanosome infections by polymerase chain reaction (PCR) amplification in wild tsetse flies in Cameroon. Parasitol 116 547 554

41. MsangiAR

WhitakerCJ

LehaneMJ

1998 Factors influencing the prevalence of trypanosome infection of Glossina pallidipes on the Ruvu flood plain of Eastern Tanzania. Acta Tropica 70 143 155

42. OtienoLH

DarjiN

1979 Abundance of Pathogenic African Trypanosomes in the Salivary Secretions of Wild Glossina-Pallidipes. Ann Trop Med Parasitol 73 583 588

43. ElsenP

Van HeesJ

De LilE

1993 L'historique et les conditions d'élevage des lignées de glossines (Diptera, Glossinidae) maintenues à l'Institut de Médecine tropicale Prince Léopold d'Anvers. J Afr Zool 107 439 449

44. Le RayD

BarryJD

EastonC

VickermanK

1977 First tsetse fly transmission of the “Antat” serodeme of Trypanosoma brucei. Ann Soc belge Med Trop 57 369 381

45. KubiC

Van Den AbbeeleJ

De DekenR

MarcottyT

DornyP

2006 The effect of starvation on the susceptibility of teneral and non-teneral tsetse flies to trypanosome infection. Med Vet Entomol 43 388 392

46. BurttE

1946 Salivation by Glossina morsitans on to glass slides: a technique for isolating infected flies. Ann Trop Med Parasitol 40 141 144

47. SchäggerH

2006 Tricine-SDS-PAGE. Nat Protocols 1 16 22

48. ValenzuelaJG

CharlabR

GalperinMY

RibeiroJMC

1998 Purification, cloning, and expression of an apyrase from the bed bug Cimex lectularius. J Biol Chem 273 30583 30590

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Eozinofilní granulomatóza s polyangiitidou
nový kurz
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa