#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

HIV-1 Envelope Subregion Length Variation during Disease Progression


The V3 loop of the HIV-1 Env protein is the primary determinant of viral coreceptor usage, whereas the V1V2 loop region is thought to influence coreceptor binding and participate in shielding of neutralization-sensitive regions of the Env glycoprotein gp120 from antibody responses. The functional properties and antigenicity of V1V2 are influenced by changes in amino acid sequence, sequence length and patterns of N-linked glycosylation. However, how these polymorphisms relate to HIV pathogenesis is not fully understood. We examined 5185 HIV-1 gp120 nucleotide sequence fragments and clinical data from 154 individuals (152 were infected with HIV-1 Subtype B). Sequences were aligned, translated, manually edited and separated into V1V2, C2, V3, C3, V4, C4 and V5 subregions. V1-V5 and subregion lengths were calculated, and potential N-linked glycosylation sites (PNLGS) counted. Loop lengths and PNLGS were examined as a function of time since infection, CD4 count, viral load, and calendar year in cross-sectional and longitudinal analyses. V1V2 length and PNLGS increased significantly through chronic infection before declining in late-stage infection. In cross-sectional analyses, V1V2 length also increased by calendar year between 1984 and 2004 in subjects with early and mid-stage illness. Our observations suggest that there is little selection for loop length at the time of transmission; following infection, HIV-1 adapts to host immune responses through increased V1V2 length and/or addition of carbohydrate moieties at N-linked glycosylation sites. V1V2 shortening during early and late-stage infection may reflect ineffective host immunity. Transmission from donors with chronic illness may have caused the modest increase in V1V2 length observed during the course of the pandemic.


Vyšlo v časopise: HIV-1 Envelope Subregion Length Variation during Disease Progression. PLoS Pathog 6(12): e32767. doi:10.1371/journal.ppat.1001228
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001228

Souhrn

The V3 loop of the HIV-1 Env protein is the primary determinant of viral coreceptor usage, whereas the V1V2 loop region is thought to influence coreceptor binding and participate in shielding of neutralization-sensitive regions of the Env glycoprotein gp120 from antibody responses. The functional properties and antigenicity of V1V2 are influenced by changes in amino acid sequence, sequence length and patterns of N-linked glycosylation. However, how these polymorphisms relate to HIV pathogenesis is not fully understood. We examined 5185 HIV-1 gp120 nucleotide sequence fragments and clinical data from 154 individuals (152 were infected with HIV-1 Subtype B). Sequences were aligned, translated, manually edited and separated into V1V2, C2, V3, C3, V4, C4 and V5 subregions. V1-V5 and subregion lengths were calculated, and potential N-linked glycosylation sites (PNLGS) counted. Loop lengths and PNLGS were examined as a function of time since infection, CD4 count, viral load, and calendar year in cross-sectional and longitudinal analyses. V1V2 length and PNLGS increased significantly through chronic infection before declining in late-stage infection. In cross-sectional analyses, V1V2 length also increased by calendar year between 1984 and 2004 in subjects with early and mid-stage illness. Our observations suggest that there is little selection for loop length at the time of transmission; following infection, HIV-1 adapts to host immune responses through increased V1V2 length and/or addition of carbohydrate moieties at N-linked glycosylation sites. V1V2 shortening during early and late-stage infection may reflect ineffective host immunity. Transmission from donors with chronic illness may have caused the modest increase in V1V2 length observed during the course of the pandemic.


Zdroje

1. StarcichBR

HahnBH

ShawGM

McNeelyPD

ModrowS

1986 Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell 45 637 648

2. WilleyRL

RutledgeRA

DiasS

FolksT

TheodoreT

1986 Identification of conserved and divergent domains within the envelope gene of the acquired immunodeficiency syndrome retrovirus. Proc Natl Acad Sci USA 83 5038 5042

3. ModrowS

HahnBE

ShawGM

GalloRC

Wong-StaalF

1987 Computer-assisted analysis of envelope protein sequences of seven human immunodeficiency virus isolates: Prediction of antigenic epitopes in conserved and variable regions. J Virol 61 570 578

4. WoodN

BhattacharyaT

KeeleBF

GiorgiE

LiuM

2009 HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC. PLoS Pathog 5 e1000414

5. CocchiF

DeVicoAL

Garzino-DemoA

CaraA

GalloRC

1996 The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection [see comments]. Nat Med 2 1244 1247

6. FengY

BroderCC

KennedyPE

BergerEA

1996 HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272 872 877

7. SpeckRF

WehrlyK

PlattEJ

AtchisonRE

CharoIF

1997 Selective employment of chemokine receptors as human immunodeficiency virus type 1 coreceptors determined by individual amino acids within the envelope V3 loop. J Virol 71 7136 7139

8. GoudsmitJ

DebouckC

MeloenRH

SmitL

BakkerM

1988 Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicits early type-specific antibodies in experimentally infected chimpanzees. ProcNatlAcadSciUSA 85 4478 4482

9. JavaherianK

LangloisAJ

McDanalC

RossKL

EcklerLI

1989 Principal neutralizing domain of the human immunodeficiency virus type 1 envelope protein. ProcNatlAcadSciUSA 86 6768 6772

10. LuoL

LiY

ChangJS

ChoSY

KimTY

1998 Induction of V3-specific cytotoxic T lymphocyte responses by HIV gag particles carrying multiple immunodominant V3 epitopes of gp120. Virology 240 316 325

11. WatanabeN

McAdamSN

BoysonJE

PiekarczykMS

YasutomiY

1994 A simian immunodeficiency virus envelope V3 cytotoxic T-lymphocyte epitope in rhesus monkeys and its restricting major histocompatibility complex class I molecule Mamu-A*02. J Virol 68 6690 6696

12. HartleyO

KlassePJ

SattentauQJ

MooreJP

2005 V3: HIV's switch-hitter. AIDS Res Hum Retroviruses 21 171 189

13. HillMD

LorenzoE

KumarA

2004 Changes in the human immunodeficiency virus V3 region that correspond with disease progression: a meta-analysis. Virus Res 106 27 33

14. IdaS

GatanagaH

ShiodaT

NagaiY

KobayashiN

1997 HIV type 1 V3 variation dynamics in vivo: Long-term persistence of non-syncytium-inducing genotypes and transient presence of syncytium-inducing genotypes during the course of progressive AIDS. AIDS Res and Human Retrovir 13 1597 1609

15. PalmerC

BalfeP

FoxD

MayJC

FrederikssonR

1996 Functional characterization of the V1V2 region of human immunodeficiency virus type 1. Virology 220 436 449

16. MasciotraS

OwenSM

RudolphD

YangC

WangB

2002 Temporal relationship between V1V2 variation, macrophage replication, and coreceptor adaptation during HIV-1 disease progression. Aids 16 1887 1898

17. KitrinosKM

HoffmanNG

NelsonJA

SwanstromR

2003 Turnover of env variable region 1 and 2 genotypes in subjects with late-stage human immunodeficiency virus type 1 infection. J Virol 77 6811 6822

18. ShiodaT

OkaS

XinX

LiuH

HarukuniR

1997 In vivo sequence variability of human immunodeficiency virus type 1 envelope gp120: association of V2 extension with slow disease progression. J Virol 71 4871 4881

19. ChohanB

LangD

SagarM

KorberB

LavreysL

2005 Selection for human immunodeficiency virus type 1 envelope glycosylation variants with shorter V1-V2 loop sequences occurs during transmission of certain genetic subtypes and may impact viral RNA levels. J Virol 79 6528 6531

20. SagarM

WuX

LeeS

OverbaughJ

2006 Human immunodeficiency virus type 1 V1-V2 envelope loop sequences expand and add glycosylation sites over the course of infection, and these modifications affect antibody neutralization sensitivity. J Virol 80 9586 9598

21. ChackerianB

RudenseyLM

OverbaughJ

1997 Specific N-linked and O-linked glycosylation modifications in the envelope V1 domain of simian immunodeficiency virus variants that evolve in the host alter recognition by neutralizing antibodies. J Virol 71 7719 7727

22. KwongPD

WyattR

RobinsonJ

SweetRW

SodroskiJ

1998 Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393 648 659

23. ChenB

VoganEM

GongH

SkehelJJ

WileyDC

2005 Determining the structure of an unliganded and fully glycosylated SIV gp120 envelope glycoprotein. Structure 13 197 211

24. CartierL

HartleyO

Dubois-DauphinM

KrauseKH

2005 Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev 48 16 42

25. AndewegA

LeeflangP

OsterhausA

BoschM

1993 Both the V2 and V3 regions of the human immunodeficiency virus type 1 surface glycoprotein functionally interact with other envelope regions in syncytium formation. J Virol 67 3232 3239

26. GroeninkM

FouchierRAM

BroersenS

BakerCH

KootM

1993 Relation of phenotype evolution of HIV-1 to envelope V2 configuration. Science 260 1513 1516

27. KoitoA

HarroweG

LevyJA

Cheng-MayerC

1994 Functional role of the V1/V2 region of human immunodeficiency virus type 1 envelope glycoprotein gp120 in infection of primary macrophages and soluble CD4 neutralization. J Virol 68 2253 2259

28. O'BrienWA

KoyanagiY

NamazieA

ZhaoJQ

DiagneA

1990 HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain. Nature 348 69 73

29. SullivanN

ThaliM

FurmanC

HoDD

SodroskiJ

1993 Effect of amino acid changes in the V1/V2 region of the human immunodeficiency virus type 1 gp120 glycoprotein on subunit association, syncytium formation, and recognition by a neutralizing antibody. J Virol 67 3674 3679

30. WesterveltP

TrowbridgeDB

EpsteinLG

BlumbergBM

LiY

1992 Macrophage tropism determinants of human immunodeficiency virus type 1 in vivo. J Virol 66 2577 2582

31. TooheyK

WehrlyK

NishioJ

PerrymanS

ChesebroB

1995 Human immunodeficiency virus envelope V1 and V2 regions influence replication efficiency in macrophages by affecting virus spread. Virology 213 70 79

32. WangN

ZhuT

HoDD

1995 Sequence diversity of V1 and V2 domains of gp120 from human immunodeficiency virus type 1: lack of correlation with viral phenotype. J Virol 69 2708 2715

33. PastoreC

NedellecR

RamosA

PontowS

RatnerL

2006 Human immunodeficiency virus type 1 coreceptor switching: V1/V2 gain-of-fitness mutations compensate for V3 loss-of-fitness mutations. J Virol 80 750 758

34. BenichouS

LegrandR

NakagawaN

FaureT

TraincardF

1992 Identification of a neutralizing domain in the external envelope glycoprotein of simian immunodeficiency virus. AIDS Res Hum Retroviruses 8 1165 1170

35. KentKA

RudE

CorcoranT

PowellC

ThiriartC

1992 Identification of two neutralizing and 8 non-neutralizing epitopes on simian immunodeficiency virus envelope using monoclonal antibodies. AIDS Res Hum Retroviruses 8 1147 1151

36. MatsumiS

MatsushitaS

YoshimuraK

JavaherianK

TakatsukiK

1995 Neutralizing monoclonal antibody against a external envelope glycoprotein (gp110) of SIVmac251. AIDS Res Hum Retroviruses 11 501 508

37. JurkiewiczE

HunsmannG

SchaffnerJ

NissleinT

LukeW

1997 Identification of the V1 region as a linear neutralizing epitope of the simian immunodeficiency virus SIVmac envelope glycoprotein. J Virol 71 9475 9481

38. PinterA

HonnenWJ

HeY

GornyMK

Zolla-PaznerS

2004 The V1/V2 domain of gp120 is a global regulator of the sensitivity of primary human immunodeficiency virus type 1 isolates to neutralization by antibodies commonly induced upon infection. J Virol 78 5205 5215

39. LamersS

SleasmanJW

SheJX

BarrieKA

PomeroySM

1993 Independent variation and positive selection in env V1-V2 domains within maternal-infant strains of human immunodeficiency virus type-1 in vivo. JVirol 67 3951 3960

40. RybarczykBJ

MontefioriD

JohnsonPR

WestA

JohnstonRE

2004 Correlation between env V1/V2 region diversification and neutralizing antibodies during primary infection by simian immunodeficiency virus sm in rhesus macaques. J Virol 78 3561 3571

41. FrostSD

WrinT

SmithDM

PondSL

LiuY

2005 Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection. Proc Natl Acad Sci U S A 102 18514 18519

42. LiB

DeckerJM

JohnsonRW

Bibollet-RucheF

WeiX

2006 Evidence for potent autologous neutralizing antibody titers and compact envelopes in early infection with subtype C human immunodeficiency virus type 1. J Virol 80 5211 5218

43. JohnsonWE

MorganJ

ReitterJ

PufferBA

CzajakS

2002 A replication-competent, neutralization-sensitive variant of simian immunodeficiency virus lacking 100 amino acids of envelope. J Virol 76 2075 2086

44. CaoJ

SullivanN

DesjardinE

ParolinC

RobinsonJ

1997 Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein. J Virol 71 9808 9812

45. DerdeynCA

DeckerJM

Bibollet-RucheF

MokiliJL

MuldoonM

2004 Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science 303 2019 2022

46. LiuY

CurlinME

DiemK

ZhaoH

GhoshAK

2008 Env length and N-linked glycosylation following transmission of human immunodeficiency virus Type 1 subtype B viruses. Virology 374 229 233

47. FrostSD

LiuY

PondSL

ChappeyC

WrinT

2005 Characterization of human immunodeficiency virus type 1 (HIV-1) envelope variation and neutralizing antibody responses during transmission of HIV-1 subtype B. J Virol 79 6523 6527

48. HughesES

BellJE

SimmondsP

1997 Investigation of population diversity of human immunodeficiency virus type 1 in vivo by nucleotide sequencing and length polymorphism analysis of the V1/V2 hypervariable region of env. J Gen Virol 78 (Pt 11) 2871 2882

49. SchackerT

CollierAC

HughesJ

SheaT

CoreyL

1996 Clinical and epidemiologic features of primary HIV infection. Ann Intern Med 125 257 264

50. KaslowRA

OstrowDG

DetelsR

PhairJP

PolkBF

1987 The Multicenter AIDS Cohort Study: rationale, organization, and selected characteristics of the participants. Am J Epidemiol 126 310 318

51. PossM

RodrigoAG

GosinkJJ

LearnGH

de Vange PanteleeffD

1998 Evolution of envelope sequences from the genital tract and peripheral blood of women infected with clade A human immunodeficiency virus type 1. J Virol 72 8240 8251

52. DacheuxL

MoreauA

Ataman-OnalY

BironF

VerrierB

2004 Evolutionary dynamics of the glycan shield of the human immunodeficiency virus envelope during natural infection and implications for exposure of the 2G12 epitope. J Virol 78 12625 12637

53. LiuY

McNevinJ

CaoJ

ZhaoH

GenowatiI

2006 Selection on the human immunodeficiency virus type 1 proteome following primary infection. J Virol 80 9519 9529

54. TrkolaA

KuhmannSE

StrizkiJM

MaxwellE

KetasT

2002 HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc Natl Acad Sci U S A 99 395 400

55. McDonaldRA

MayersDL

ChungRC

WagnerKF

Ratto-KimS

1997 Evolution of human immunodeficiency virus type 1 env sequence variation in patients with diverse rates of disease progression and T-cell function. J Virol 71 1871 1879

56. ShankarappaR

MargolickJB

GangeSJ

RodrigoAG

UpchurchD

1999 Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol 73 10489 10502

57. TobinNH

LearnGH

HolteSE

WangY

MelvinAJ

2005 Evidence that low-level viremias during effective highly active antiretroviral therapy result from two processes: expression of archival virus and replication of virus. J Virol 79 9625 9634

58. RodrigoAG

GorackePC

RowhanianK

MullinsJI

1997 Quantitation of target molecules from polymerase chain reaction-based limiting dilution assays. AIDS Res and Hum Retrovir 13 737 742

59. AltfeldM

RosenbergES

ShankarappaR

MukherjeeJS

HechtFM

2001 Cellular immune responses and viral diversity in individuals treated during acute and early HIV-1 infection. J Exp Med 193 169 180

60. DelwartEL

HerringB

RodrigoAG

MullinsJI

1995 Genetic Subtyping of Human Immunodeficiency Virus Using a Heteroduplex Mobility Assay. PCR Methods and Applications 4 S202 216

61. ThompsonJD

HigginsDG

GibsonTJ

1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 4673 4680

62. JensenMA

LiFS

van 't WoutAB

NickleDC

ShrinerD

2003 Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences. J Virol 77 13376 13388

63. LengauerT

SanderO

SierraS

ThielenA

KaiserR

2007 Bioinformatics prediction of HIV coreceptor usage. Nat Biotechnol 25 1407 1410

64. PillaiS

GoodB

RichmanD

CorbeilJ

2003 A new perspective on V3 phenotype prediction. AIDS Res Hum Retroviruses 19 145 149

65. BoisvertS

MarchandM

LavioletteF

CorbeilJ

2008 HIV-1 coreceptor usage prediction without multiple alignments: an application of string kernels. Retrovirology 5 110

66. BuschMP

SattenGA

1997 Time course of viremia and antibody seroconversion following human immunodeficiency virus exposure. Am J Med 102 117 124; discussion 125–116

67. ConstantineNT

van der GroenG

BelseyEM

TamashiroH

1994 Sensitivity of HIV-antibody assays determined by seroconversion panels. Aids 8 1715 1720

68. HanleyJA

NegassaA

EdwardesMD

ForresterJE

2003 Statistical analysis of correlated data using generalized estimating equations: an orientation. Am J Epidemiol 157 364 375

69. BurtonP

GurrinL

SlyP

1998 Extending the simple linear regression model to account for correlated responses: an introduction to generalized estimating equations and multi-level mixed modelling. Stat Med 17 1261 1291

70. ZegerSL

LiangKY

1986 Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42 121 130

71. EdmonsonP

Murphey-CorbM

MartinLN

DelahuntyC

HeeneyJ

1998 Evolution of a Simian Immunodeficiency Virus pathogen. J Virol 72 405 414

72. BunnikEM

PisasL

van NuenenAC

SchuitemakerH

2008 Autologous neutralizing humoral immunity and evolution of the viral envelope in the course of subtype B human immunodeficiency virus type 1 infection. J Virol 82 7932 7941

73. LiuSL

RodrigoAG

ShankarappaR

LearnGH

HsuL

1996 HIV quasispecies and resampling. Science 273 415 416

74. DelwartEL

PanH

SheppardHW

WolpertD

NeumannAU

1997 Slower evolution of human immunodeficiency virus type 1 quasispecies during progression to AIDS. J Virol 71 7498 7508

75. PilcherCD

TienHC

EronJJJr

VernazzaPL

LeuSY

2004 Brief but Efficient: Acute HIV Infection and the Sexual Transmission of HIV. J Infect Dis 189 1785 1792

76. WawerMJ

GrayRH

SewankamboNK

SerwaddaD

LiX

2005 Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J Infect Dis 191 1403 1409

77. KawashimaY

PfafferottK

FraterJ

MatthewsP

PayneR

2009 Adaptation of HIV-1 to human leukocyte antigen class I. Nature 458 641 645

78. MooreCB

JohnM

JamesIR

ChristiansenFT

WittCS

2002 Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296 1439 1443

79. YusimK

KesmirC

GaschenB

AddoMM

AltfeldM

2002 Clustering patterns of cytotoxic T-lymphocyte epitopes in human immunodeficiency virus type 1 (HIV-1) proteins reveal imprints of immune evasion on HIV-1 global variation. J Virol 76 8757 8768

80. PossM

MartinHL

KreissJK

GranvilleL

ChohanB

1995 Diversity in virus populations from genital secretions and peripheral blood from women recently infected with human immunodeficiency virus type 1. J Virol 69 8118 8122

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#