#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

HIV Capsid is a Tractable Target for Small Molecule Therapeutic Intervention


Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy.


Vyšlo v časopise: HIV Capsid is a Tractable Target for Small Molecule Therapeutic Intervention. PLoS Pathog 6(12): e32767. doi:10.1371/journal.ppat.1001220
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001220

Souhrn

Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy.


Zdroje

1. HammerSM

EronJJJr

ReissP

SchooleyRT

ThompsonMA

2008 Antiretroviral Treatment of Adult HIV Infection: 2008 Recommendations of the International AIDS Society-USA Panel. JAMA 300 555 570

2. TaiwoB

2009 Understanding transmitted HIV resistance through the experience in the USA. International Journal of Infectious Diseases 13 552 559

3. SmithRJ

OkanoJT

KahnJS

BodineEN

BlowerS

2010 Evolutionary dynamics of complex networks of HIV drug-resistant strains: the case of San Francisco. Science 327 697 701

4. AdamsonCS

FreedEO

2010 Novel approaches to inhibiting HIV-1 replication. Antiviral Research 85 119 141

5. MascarenhasAP

Musier-ForsythK

2009 The capsid protein of human immunodeficiency virus: interactions of HIV-1 capsid with host protein factors. FEBS Journal 276 6118 6127

6. NeiraJ

2009 The capsid protein of human immunodeficiency virus: designing inhibitors of capsid assembly. FEBS Journal 276 6110 6117

7. Ako-AdjeiD

JohnsonMC

VogtVM

2005 The Retroviral Capsid Domain Dictates Virion Size, Morphology, and Coassembly of Gag into Virus-Like Particles. J Virol 79 13463 13472

8. Ganser-PornillosBK

von SchwedlerUK

StrayKM

AikenC

SundquistWI

2004 Assembly properties of the human immunodeficiency virus type 1 CA protein. J Virol 78 2545 2552

9. AikenC

2006 Viral and cellular factors that regulate HIV-1 uncoating. Curr Opin HIV AIDS 1 194 199

10. TangC

LoeligerE

KindeI

KyereS

MayoK

2003 Antiviral inhibition of the HIV-1 capsid protein. J Mol Biol 327 1013 1020

11. StichtJ

HumbertM

FindlowS

BodemJ

MullerB

2005 A peptide inhibitor of HIV-1 assembly in vitro. Nat Struct Mol Biol 12 671 677

12. ZhangH

ZhaoQ

BhattacharyaS

WaheedAA

TongX

2008 A Cell-penetrating Helical Peptide as a Potential HIV-1 Inhibitor. Journal of Molecular Biology 378 565 580

13. Ganser-PornillosBK

ChengA

YeagerM

2007 Structure of Full-Length HIV-1 CA: A Model for the Mature Capsid Lattice. Cell 131 70 79

14. PornillosO

Ganser-PornillosBK

KellyBN

HuaY

WhitbyFG

2009 X-ray structures of the hexameric building block of the HIV capsid. Cell 137 1282 1292

15. CaoJ

IsaacsonJ

PatickAK

BlairWS

2005 High-throughput human immunodeficiency virus type 1 (HIV-1) full replication assay that includes HIV-1 Vif as an antiviral target. Antimicrob Agents Chemother 49 3833 3841

16. ButlerSL

HansenMS

BushmanFD

2001 A quantitative assay for HIV DNA integration in vivo. Nat Med 7 631 634

17. LiF

Goila-GaurR

SalzwedelK

KilgoreNR

ReddickM

2003 PA-457: A potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proceedings of the National Academy of Sciences of the United States of America 100 13555 13560

18. BlairWS

CaoJ

Fok-SeangJ

GriffinP

IsaacsonJ

2009 New Small-Molecule Inhibitor Class Targeting Human Immunodeficiency Virus Type 1 Virion Maturation. Antimicrob Agents Chemother 53 5080 5087

19. KellyBN

HowardBR

WangH

RobinsonH

SundquistWI

2006 Implications for Viral Capsid Assembly from Crystal Structures of HIV-1 Gag(1–278) and CA(N)(133–278). Biochemistry 45 11257 11266

20. GambleTR

VajdosFF

YooS

WorthylakeDK

HouseweartM

1996 Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87 1285 1294

21. Monaco-MalbetS

Berthet-ColominasC

NovelliA

BattaiN

PigaN

2000 Mutual conformational adaptations in antigen and antibody upon complex formation between an Fab and HIV-1 capsid protein p24. Structure 8 1069 1077

22. KellyBN

KyereS

KindeI

TangC

HowardBR

2007 Structure of the Antiviral Assembly Inhibitor CAP-1 Complex with the HIV-1 CA Protein. Journal of Molecular Biology 373 355 366

23. TernoisF

StichtJ

DuquerroyS

KrausslichHG

ReyFA

2005 The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor. Nat Struct Mol Biol 12 678 682

24. BhattacharyaS

ZhangH

DebnathAK

CowburnD

2008 Solution structure of a hydrocarbon stapled peptide inhibitor in complex with monomeric C-terminal domain of HIV-1 capsid. J Biol Chem 283 16274 16278

25. ForsheyBM

von SchwedlerU

SundquistWI

AikenC

2002 Formation of a Human Immunodeficiency Virus Type 1 Core of Optimal Stability Is Crucial for Viral Replication. J Virol 76 5667 5677

26. LubanJ

2007 Cyclophilin A, TRIM5, and Resistance to Human Immunodeficiency Virus Type 1 Infection. J Virol 81 1054 1061

27. ShiJ

ZhouJ

ShahVB

AikenC

WhitbyK

2010 Small Molecule Inhibition of Human Immunodeficiency Virus Type 1 Infection by Virus Capsid Destabilization. J Virol epub ahead of print

28. BlairWS

IsaacsonJ

LiX

CaoJ

PengQ

2005 A novel HIV-1 antiviral high throughput screening approach for the discovery of HIV-1 inhibitors. Antiviral Research 65 107 116

29. BlairWS

CaoJ

JacksonL

JimenezJ

PengQ

2007 Identification and Characterization of UK-201844, a Novel Inhibitor That Interferes with Human Immunodeficiency Virus Type 1 gp160 Processing. Antimicrob Agents Chemother 51 3554 3561

30. LanmanJ

SextonJ

SakalianM

PreveligePEJr

2002 Kinetic analysis of the role of intersubunit interactions in human immunodeficiency virus type 1 capsid protein assembly in vitro. J Virol 76 6900 6908

31. LeslieAGW

1992 mosflm. Joint CCP4+ESF-EAMCB Newsletter on Protein Crystallography, No 26

32. Collaborative Computational Project N 1994 The CCP4 Suite: Programs for protein crystallography. Acta Crystallographica Section D Biological Crystallography 50 760 763

33. MurshudovGN

VaginAA

DodsonEJ

1997 Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53 240 255

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#