#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Admixture in Latin America: Geographic Structure, Phenotypic Diversity and Self-Perception of Ancestry Based on 7,342 Individuals


Latin America has a history of extensive mixing between Native Americans and people arriving from Europe and Africa. As a result, individuals in the region have a highly heterogeneous genetic background and show great variation in physical appearance. Latin America offers an excellent opportunity to examine the genetic basis of the differentiation in physical appearance between Africans, Europeans and Native Americans. The region is also an advantageous setting in which to examine the interplay of genetic, physical and social factors in relation to ethnic/racial self-perception. Here we present the most extensive analysis of genetic ancestry, physical diversity and self-perception of ancestry yet conducted in Latin America. We find significant geographic variation in ancestry across the region, this variation being consistent with demographic history and census information. We show that genetic ancestry impacts many aspects of physical appearance. We observe that self-perception is highly influenced by physical appearance, and that variation in physical appearance biases self-perception of ancestry relative to genetically estimated ancestry.


Vyšlo v časopise: Admixture in Latin America: Geographic Structure, Phenotypic Diversity and Self-Perception of Ancestry Based on 7,342 Individuals. PLoS Genet 10(9): e32767. doi:10.1371/journal.pgen.1004572
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004572

Souhrn

Latin America has a history of extensive mixing between Native Americans and people arriving from Europe and Africa. As a result, individuals in the region have a highly heterogeneous genetic background and show great variation in physical appearance. Latin America offers an excellent opportunity to examine the genetic basis of the differentiation in physical appearance between Africans, Europeans and Native Americans. The region is also an advantageous setting in which to examine the interplay of genetic, physical and social factors in relation to ethnic/racial self-perception. Here we present the most extensive analysis of genetic ancestry, physical diversity and self-perception of ancestry yet conducted in Latin America. We find significant geographic variation in ancestry across the region, this variation being consistent with demographic history and census information. We show that genetic ancestry impacts many aspects of physical appearance. We observe that self-perception is highly influenced by physical appearance, and that variation in physical appearance biases self-perception of ancestry relative to genetically estimated ancestry.


Zdroje

1. SturmRA (2009) Molecular genetics of human pigmentation diversity. Hum Mol Genet 18: R9–17.

2. LiuF, WollsteinA, HysiPG, Ankra-BaduGA, SpectorTD, et al. (2010) Digital quantification of human eye color highlights genetic association of three new loci. PLoS Genet 6: e1000934.

3. JacobsLC, WollsteinA, LaoO, HofmanA, KlaverCC, et al. (2013) Comprehensive candidate gene study highlights UGT1A and BNC2 as new genes determining continuous skin color variation in Europeans. Hum Genet 132: 147–158.

4. ZhangM, SongF, LiangL, NanH, ZhangJ, et al. (2013) Genome-wide association studies identify several new loci associated with pigmentation traits and skin cancer risk in European Americans. Hum Mol Genet 22: 2948–2959.

5. Morner M (1967) Race Mixture in the History of Latin America. Little Brown & Company. 178 p.

6. Sanchez-Albornoz N (1974) The population of Latin America: a history. University of California Press. 314 p.

7. Wade P (1997) Race and ethnicity in Latin America. Pluto Press. 160 p.

8. Appelbaum NP, Macpherson AS, Rosemblatt KA (2003) Race and nation in modern Latin America. University of North Carolina Press. 352 p.

9. Larson B (2004) Trials of nation making : liberalism, race, and ethnicity in the Andes, 1810–1910. Cambridge University Press. 318 p.

10. SansM (2000) Admixture studies in Latin America: from the 20th to the 21st century. HumBiol 72: 155–177.

11. Salzano FM, Bortolini MC (2002) The Evolution and Genetics of Latin American Populations. Cambridge University Press. 528 p.

12. WangS, RayN, RojasW, ParraMV, BedoyaG, et al. (2008) Geographic patterns of genome admixture in Latin American Mestizos. PLoS Genet 4: e1000037.

13. BrycK, VelezC, KarafetT, Moreno-EstradaA, ReynoldsA, et al. (2010) Colloquium paper: genome-wide patterns of population structure and admixture among Hispanic/Latino populations. Proc Natl Acad Sci U S A 107 Suppl 2: 8954–8961.

14. SalzanoFM, SansM (2014) Interethnic admixture and the evolution of Latin American populations. Genet Mol Biol 37: 151–170.

15. ParraFC, AmadoRC, LambertucciJR, RochaJ, AntunesCM, et al. (2003) Color and genomic ancestry in Brazilians. Proc Natl Acad Sci U S A 100: 177–182.

16. Ventura SantosR, FryPH, MonteiroS, MaioMC, RodriguesJC, et al. (2009) Color, Race, and Genomic Ancestry in Brazil: Dialogues between Anthropology and Genetics. Current Anthropology 50: 787–819.

17. AlexanderDH, NovembreJ, LangeK (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19: 1655–1664.

18. PaschouP, LewisJ, JavedA, DrineasP (2010) Ancestry informative markers for fine-scale individual assignment to worldwide populations. J Med Genet 47: 835–847.

19. ScharfJM, YuD, MathewsCA, NealeBM, StewartSE, et al. (2012) Genome-wide association study of Tourette's syndrome. Mol Psychiatry 721–8.

20. Silva-ZolezziI, Hidalgo-MirandaA, Estrada-GilJ, Fernandez-LopezJC, Uribe-FigueroaL, et al. (2009) Analysis of genomic diversity in Mexican Mestizo populations to develop genomic medicine in Mexico. Proc Natl Acad Sci U S A 106: 8611–8616.

21. PenaSD, Di PietroG, Fuchshuber-MoraesM, GenroJP, HutzMH, et al. (2011) The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS One 6: e17063.

22. CampbellDD, ParraMV, DuqueC, GallegoN, FrancoL, et al. (2012) Amerind ancestry, socioeconomic status and the genetics of type 2 diabetes in a Colombian population. PLoS One 7: e33570.

23. Collier S, Skidmore TE, Blakemore H (1992) Cambridge Encyclopedia of Latin America and the Caribbean. Cambridge University Press. 480 p.

24. United Nations Human Settlements Programme (2012) State of Latin American and Caribbean Cities 2012. UN-Habitat.

25. RojasW, ParraMV, CampoO, CaroMA, LoperaJG, et al. (2010) Genetic make up and structure of Colombian populations by means of uniparental and biparental DNA markers. Am J Phys Anthropol 143: 13–20.

26. Alves-SilvaJ, da SilvaSM, GuimaraesPE, FerreiraAC, BandeltHJ, et al. (2000) The Ancestry of Brazilian mtDNA Lineages. AmJHumGenet 67: 444–461.

27. Burkholder MA, Johnson LL (2003) Colonial Latin America. Oxford University Press. 448 p.

28. Thomas H (1997) The Slave Trade. Simon and Schuster. 912 p.

29. Appiah A, Gates HL (1999) Africana : the encyclopedia of the African and African American experience. Basic Civitas Books. 2095 p.

30. MortonNE (1964) Genetic studies of northeastern Brazil. Cold Spring Harbor Symp Quant Biol 29: 69–79.

31. TrachtenbergASAE (1985) SalzanoFM (1985) DaRochaFJ (1985) Canonical correlation analysis of assortative mating in two groups of Brazilians. J Biosoc Sci 17: 389–403.

32. MalinaRMSHA (1983) BuschangPH (1983) AronsonWL (1983) LittleBB (1983) Assortative mating for phenotypic characteristics in a Zapotec community in Oaxaca, Mexico. J Biosoc Sci 15: 273–280.

33. ProcidanoME, RoglerLH (1989) Homogamous assortative mating among Puerto Rican families: intergenerational processes and the migration experience. Behav Genet 19: 343–354.

34. RischN, ChoudhryS, ViaM, BasuA, SebroR, et al. (2009) Ancestry-related assortative mating in Latino populations. Genome Biol 10: R132.

35. RelethfordJH (2009) Race and global patterns of phenotypic variation. Am J Phys Anthropol 139: 16–22.

36. BelezaS, JohnsonNA, CandilleSI, AbsherDM, CoramMA, et al. (2013) Genetic architecture of skin and eye color in an African-European admixed population. PLoS Genet 9: e1003372.

37. FujimotoA, KimuraR, OhashiJ, OmiK, YuliwulandariR, et al. (2008) A scan for genetic determinants of human hair morphology: EDAR is associated with Asian hair thickness. Hum Mol Genet 17: 835–843.

38. MouC, ThomasonHA, WillanPM, ClowesC, HarrisWE, et al. (2008) Enhanced ectodysplasin-A receptor (EDAR) signaling alters multiple fiber characteristics to produce the East Asian hair form. Hum Mutat 29: 1405–1411.

39. TanJ, YangY, TangK, SabetiPC, JinL, et al. (2013) The adaptive variant EDARV370A is associated with straight hair in East Asians. Hum Genet 132: 1187–1191.

40. Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The History and Geography of Human Genes. Princeton University Press. 1088 p.

41. HillmerAM, BrockschmidtFF, HannekenS, EigelshovenS, SteffensM, et al. (2008) Susceptibility variants for male-pattern baldness on chromosome 20p11. Nat Genet 40: 1279–1281.

42. LiR, BrockschmidtFF, KieferAK, StefanssonH, NyholtDR, et al. (2012) Six novel susceptibility Loci for early-onset androgenetic alopecia and their unexpected association with common diseases. PLoS Genet 8: e1002746.

43. YangJ, BenyaminB, McEvoyBP, GordonS, HendersAK, et al. (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42: 565–569.

44. Lango AllenH, EstradaK, LettreG, BerndtSI, WeedonMN, et al. (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467: 832–838.

45. McEvoyBP, VisscherPM (2009) Genetics of human height. Econ Hum Biol 7: 294–306.

46. Salvatore RD, Coatsworth JH, Challú AlE (2010) Living standards in Latin American history: height, welfare, and development, 1750–2000. Harvard University Press. 350 p.

47. Gonzalez-JoseRG, Ramirez-RozziF, SardiM, Martinez-AbadiasN, HernandezM, et al. (2005) Functional-cranial approach to the influence of economic strategy on skull morphology. American Journal of Physical Anthropology 128: 757–771.

48. HarvatiK, WeaverTD (2006) Human cranial anatomy and the differential preservation of population history and climate signatures. Anat Rec A Discov Mol Cell Evol Biol 288: 1225–1233.

49. Martinez-AbadiasN, Gonzalez-JoseR, Gonzalez-MartinA, Van DerMS, TalaveraA, et al. (2006) Phenotypic evolution of human craniofacial morphology after admixture: a geometric morphometrics approach. Am J Phys Anthropol 129: 387–398.

50. PaternosterL, ZhurovAI, TomaAM, KempJP, St PourcainB, et al. (2012) Genome-wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position. Am J Hum Genet 90: 478–485.

51. LiuF, van der LijnF, SchurmannC, ZhuG, ChakravartyMM, et al. (2012) A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet 8: e1002932.

52. TellesEF (2013) R (2013) Not just color: whiteness, Nation, and status in Latin America. Hispanic American Historical Review 93: 411–449.

53. MountainJL, RischN (2004) Assessing genetic contributions to phenotypic differences among ‘racial’ and ‘ethnic’ groups. Nat Genet 36: S48–53.

54. Klingenberg CP (2008) MorphoJ. Faculty of Life Sciences, University of Manchester, UK. http://www.flywings.org.uk/MorphoJpage.htm.

55. RosenbergNA, LiLM, WardR, PritchardJK (2003) Informativeness of genetic markers for inference of ancestry. Am J Hum Genet 73: 1402–1422.

56. LiJZ, AbsherDM, TangH, SouthwickAM, CastoAM, et al. (2008) Worldwide human relationships inferred from genome-wide patterns of variation. Science 319: 1100–1104.

57. ReichD, PattersonN, CampbellD, TandonA, MazieresS, et al. (2012) Reconstructing Native American population history. Nature 488: 370–374.

58. GalanterJM, Fernandez-LopezJC, GignouxCR, Barnholtz-SloanJ, Fernandez-RozadillaC, et al. (2012) Development of a panel of genome-wide ancestry informative markers to study admixture throughout the Americas. PLoS Genet 8: e1002554.

59. Center for International Earth Science Information Network - CIESIN - Columbia University, The World Bank, and Centro Internacional de Agricultura Tropical - CIAT. Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Settlement Points (Accessed April 2014). http://sedac.ciesin.columbia.edu/data/set/grump-v1-settlement-points: NASA Socioeconomic Data and Applications Center.

60. R Development Core Team (2010) R: A language and environment for statistical computing. Vienna.

61. The MathWorks I (2012) MATLAB 8.0 and Statistics Toolbox 8.1.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#