#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Moonlighting Enzyme Links Cell Size with Central Metabolism


Growth rate and nutrient availability are the primary determinants of size in single-celled organisms: rapidly growing Escherichia coli cells are more than twice as large as their slow growing counterparts. Here we report the identification of the glucosyltransferase OpgH as a nutrient-dependent regulator of E. coli cell size. During growth under nutrient-rich conditions, OpgH localizes to the nascent septal site, where it antagonizes assembly of the tubulin-like cell division protein FtsZ, delaying division and increasing cell size. Biochemical analysis is consistent with OpgH sequestering FtsZ from growing polymers. OpgH is functionally analogous to UgtP, a Bacillus subtilis glucosyltransferase that inhibits cell division in a growth rate-dependent fashion. In a striking example of convergent evolution, OpgH and UgtP share no homology, have distinct enzymatic activities, and appear to inhibit FtsZ assembly through different mechanisms. Comparative analysis of E. coli and B. subtilis reveals conserved aspects of growth rate regulation and cell size control that are likely to be broadly applicable. These include the conservation of uridine diphosphate glucose as a proxy for nutrient status and the use of moonlighting enzymes to couple growth rate-dependent phenomena to central metabolism.


Vyšlo v časopise: A Moonlighting Enzyme Links Cell Size with Central Metabolism. PLoS Genet 9(7): e32767. doi:10.1371/journal.pgen.1003663
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003663

Souhrn

Growth rate and nutrient availability are the primary determinants of size in single-celled organisms: rapidly growing Escherichia coli cells are more than twice as large as their slow growing counterparts. Here we report the identification of the glucosyltransferase OpgH as a nutrient-dependent regulator of E. coli cell size. During growth under nutrient-rich conditions, OpgH localizes to the nascent septal site, where it antagonizes assembly of the tubulin-like cell division protein FtsZ, delaying division and increasing cell size. Biochemical analysis is consistent with OpgH sequestering FtsZ from growing polymers. OpgH is functionally analogous to UgtP, a Bacillus subtilis glucosyltransferase that inhibits cell division in a growth rate-dependent fashion. In a striking example of convergent evolution, OpgH and UgtP share no homology, have distinct enzymatic activities, and appear to inhibit FtsZ assembly through different mechanisms. Comparative analysis of E. coli and B. subtilis reveals conserved aspects of growth rate regulation and cell size control that are likely to be broadly applicable. These include the conservation of uridine diphosphate glucose as a proxy for nutrient status and the use of moonlighting enzymes to couple growth rate-dependent phenomena to central metabolism.


Zdroje

1. ChienAC, HillNS, LevinPA (2012) Cell size control in bacteria. Curr Biol 22: R340–349.

2. SchaechterM, MaaløeO, KjeldgaardNO (1958) Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol 19: 592–606.

3. PierucciO, HelmstetterCE, RickertM, WeinbergerM, LeonardAC (1987) Overexpression of the dnaA gene in Escherichia coli B/r: chromosome and minichromosome replication in the presence of rifampin. J Bacteriol 169: 1871–1877.

4. SargentMG (1975) Control of cell length in Bacillus subtilis. J Bacteriol 123: 7–19.

5. FantesP, NurseP (1977) Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp Cell Res 107: 377–386.

6. WeartRB, LeeAH, ChienAC, HaeusserDP, HillNS, et al. (2007) A metabolic sensor governing cell size in bacteria. Cell 130: 335–347.

7. ChienAC, ZarehSK, WangYM, LevinPA (2012) Changes in the oligomerization potential of the division inhibitor UgtP co-ordinate Bacillus subtilis cell size with nutrient availability. Mol Microbiol 86: 594–610.

8. LazarevicV, SoldoB, MedicoN, PooleyH, BronS, et al. (2005) Bacillus subtilis alpha-phosphoglucomutase is required for normal cell morphology and biofilm formation. Appl Environ Microbiol 71: 39–45.

9. LuM, KlecknerN (1994) Molecular cloning and characterization of the pgm gene encoding phosphoglucomutase of Escherichia coli. J Bacteriol 176: 5847–5851.

10. HillNS, KadoyaR, ChattorajDK, LevinPA (2012) Cell size and the initiation of DNA replication in bacteria. PLoS Genet 8: e1002549.

11. LuM, CampbellJ, BoyeE, KlecknerN (1994) SeqA: a negative modulator of replication initiation in E. coli. Cell 77: 413–426.

12. HaleCA, de BoerPA (1999) Recruitment of ZipA to the septal ring of Escherichia coli is dependent on FtsZ and independent of FtsA. J Bacteriol 181: 167–176.

13. BernhardtTG, de BoerPA (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol Cell 18: 555–564.

14. RicardM, HirotaY (1973) Process of cellular division in Escherichia coli: physiological study on thermosensitive mutants defective in cell division. J Bacteriol 116: 314–322.

15. LutkenhausJF, WuHC (1980) Determination of transcriptional units and gene products from the ftsA region of Escherichia coli. J Bacteriol 143: 1281–1288.

16. BabaT, AraT, HasegawaM, TakaiY, OkumuraY, et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006 0008.

17. BretonC, SnajdrovaL, JeanneauC, KocaJ, ImbertyA (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16: 29R–37R.

18. BohinJP (2000) Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol Lett 186: 11–19.

19. SchneiderJE, ReinholdV, RumleyMK, KennedyEP (1979) Structural studies of the membrane-derived oligosaccharides of Escherichia coli. J Biol Chem 254: 10135–10138.

20. HanoulleX, RolletE, ClantinB, LandrieuI, Odberg-FerragutC, et al. (2004) Structural analysis of Escherichia coli OpgG, a protein required for the biosynthesis of osmoregulated periplasmic glucans. J Mol Biol 342: 195–205.

21. RajagopalS, EisN, BhattacharyaM, NickersonKW (2003) Membrane-derived oligosaccharides (MDOs) are essential for sodium dodecyl sulfate resistance in Escherichia coli. FEMS Microbiol Lett 223: 25–31.

22. EbelW, VaughnGJ, PetersHK3rd, TrempyJE (1997) Inactivation of mdoH leads to increased expression of colanic acid capsular polysaccharide in Escherichia coli. J Bacteriol 179: 6858–6861.

23. FiedlerW, RoteringH (1988) Properties of Escherichia coli mutants lacking membrane-derived oligosaccharides. J Biol Chem 263: 14684–14689.

24. GirgisHS, LiuY, RyuWS, TavazoieS (2007) A comprehensive genetic characterization of bacterial motility. PLoS Genet 3: 1644–1660.

25. HoltjeJV, FiedlerW, RoteringH, WalderichB, van DuinJ (1988) Lysis induction of Escherichia coli by the cloned lysis protein of the phage MS2 depends on the presence of osmoregulatory membrane-derived oligosaccharides. J Biol Chem 263: 3539–3541.

26. Penaloza-VazquezA, SreedharanA, BenderCL (2010) Transcriptional studies of the hrpM/opgH gene in Pseudomonas syringae during biofilm formation and in response to different environmental challenges. Environ Microbiol 12: 1452–1467.

27. LoubensI, DebarbieuxL, BohinA, LacroixJM, BohinJP (1993) Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity of Pseudomonas syringae. Mol Microbiol 10: 329–340.

28. PageF, AltabeS, Hugouvieux-Cotte-PattatN, LacroixJM, Robert-BaudouyJ, et al. (2001) Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J Bacteriol 183: 3134–3141.

29. BhagwatAA, JunW, LiuL, KannanP, DharneM, et al. (2009) Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice. Microbiology 155: 229–237.

30. GottesmanS, McCullenCA, GuillierM, VanderpoolCK, MajdalaniN, et al. (2006) Small RNA regulators and the bacterial response to stress. Cold Spring Harb Symp Quant Biol 71: 1–11.

31. ShibaY, MatsumotoK, HaraH (2006) DjlA negatively regulates the Rcs signal transduction system in Escherichia coli. Genes Genet Syst 81: 51–56.

32. GervaisFG, PhoenixP, DrapeauGR (1992) The rcsB gene, a positive regulator of colanic acid biosynthesis in Escherichia coli, is also an activator of ftsZ expression. J Bacteriol 174: 3964–3971.

33. CarballesF, BertrandC, BoucheJP, CamK (1999) Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC-rcsB. Mol Microbiol 34: 442–450.

34. WardJEJr, LutkenhausJ (1985) Overproduction of FtsZ induces minicell formation in E. coli. Cell 42: 941–949.

35. HenggeR (2008) The two-component network and the general stress sigma factor RpoS (sigma S) in Escherichia coli. Adv Exp Med Biol 631: 40–53.

36. BohringerJ, FischerD, MoslerG, Hengge-AronisR (1995) UDP-glucose is a potential intracellular signal molecule in the control of expression of sigma S and sigma S-dependent genes in Escherichia coli. J Bacteriol 177: 413–422.

37. NagahamaH, SakamotoY, MatsumotoK, HaraH (2006) RcsA-dependent and -independent growth defects caused by the activated Rcs phosphorelay system in the Escherichia coli pgsA null mutant. J Gen Appl Microbiol 52: 91–98.

38. CanoDA, Dominguez-BernalG, TierrezA, Garcia-Del PortilloF, CasadesusJ (2002) Regulation of capsule synthesis and cell motility in Salmonella enterica by the essential gene igaA. Genetics 162: 1513–1523.

39. DebarbieuxL, BohinA, BohinJP (1997) Topological analysis of the membrane-bound glucosyltransferase, MdoH, required for osmoregulated periplasmic glucan synthesis in Escherichia coli. J Bacteriol 179: 6692–6698.

40. WeartRB, NakanoS, LaneBE, ZuberP, LevinPA (2005) The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Mol Microbiol 57: 238–249.

41. MukherjeeA, LutkenhausJ (1999) Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations. J Bacteriol 181: 823–832.

42. BuskePJ, LevinPA (2012) Extreme C terminus of bacterial cytoskeletal protein FtsZ plays fundamental role in assembly independent of modulatory proteins. J Biol Chem 287: 10945–10957.

43. ChoH, McManusHR, DoveSL, BernhardtTG (2011) Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist. Proc Natl Acad Sci U S A 108: 3773–3778.

44. HuZ, MukherjeeA, PichoffS, LutkenhausJ (1999) The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci U S A 96: 14819–14824.

45. SugimotoS, YamanakaK, NishikoriS, MiyagiA, AndoT, et al. (2010) AAA+ chaperone ClpX regulates dynamics of prokaryotic cytoskeletal protein FtsZ. J Biol Chem 285: 6648–6657.

46. MukherjeeA, CaoC, LutkenhausJ (1998) Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc Natl Acad Sci U S A 95: 2885–2890.

47. EricksonHP, AndersonDE, OsawaM (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74: 504–528.

48. LutkenhausJ, PichoffS, DuS (2012) Bacterial cytokinesis: From Z ring to divisome. Cytoskeleton (Hoboken)

49. AdamsDW, ErringtonJ (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7: 642–653.

50. RombergL, LevinPA (2003) Assembly dynamics of the bacterial cell division protein FtsZ: poised at the edge of stability. Annu Rev Microbiol 57: 125–154.

51. CordellSC, RobinsonEJ, LoweJ (2003) Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc Natl Acad Sci U S A 100: 7889–7894.

52. MukherjeeA, LutkenhausJ (1998) Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J 17: 462–469.

53. ChenY, MilamSL, EricksonHP (2012) SulA inhibits assembly of FtsZ by a simple sequestration mechanism. Biochemistry 51: 3100–3109.

54. ShenB, LutkenhausJ (2010) Examination of the interaction between FtsZ and MinCN in E. coli suggests how MinC disrupts Z rings. Mol Microbiol 75: 1285–1298.

55. ThanbichlerM, ShapiroL (2006) MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126: 147–162.

56. TonthatNK, AroldST, PickeringBF, Van DykeMW, LiangS, et al. (2011) Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. EMBO J 30: 154–164.

57. WeartRB, LevinPA (2003) Growth rate-dependent regulation of medial FtsZ ring formation. J Bacteriol 185: 2826–2834.

58. PalaciosP, VicenteM, SanchezM (1996) Dependency of Escherichia coli cell-division size, and independency of nucleoid segregation on the mode and level of ftsZ expression. Mol Microbiol 20: 1093–1098.

59. BoyleDS, KhattarMM, AddinallSG, LutkenhausJ, DonachieWD (1997) ftsW is an essential cell-division gene in Escherichia coli. Mol Microbiol 24: 1263–1273.

60. VatsP, ShihYL, RothfieldL (2009) Assembly of the MreB-associated cytoskeletal ring of Escherichia coli. Mol Microbiol 72: 170–182.

61. HubertsDH, van der KleiIJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 1803: 520–525.

62. KennedyEP (1982) Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Proc Natl Acad Sci U S A 79: 1092–1095.

63. KennedyEP, RumleyMK (1988) Osmotic regulation of biosynthesis of membrane-derived oligosaccharides in Escherichia coli. J Bacteriol 170: 2457–2461.

64. WoodJM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63: 230–262.

65. MeuryJ (1988) Glycine betaine reverses the effects of osmotic stress on DNA replication and cellular division in Escherichia coli. Arch Microbiol 149: 232–239.

66. Bury-MoneS, NomaneY, ReymondN, BarbetR, JacquetE, et al. (2009) Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genet 5: e1000651.

67. VaronD, BoylanSA, OkamotoK, PriceCW (1993) Bacillus subtilis gtaB encodes UDP-glucose pyrophosphorylase and is controlled by stationary-phase transcription factor sigma B. J Bacteriol 175: 3964–3971.

68. ZhangYM, RockCO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6: 222–233.

69. YaoZ, DavisRM, KishonyR, KahneD, RuizN (2012) Regulation of cell size in response to nutrient availability by fatty acid biosynthesis in Escherichia coli. Proc Natl Acad Sci U S A 109: E2561–2568.

70. ClarkDJ, MaaløeO (1967) DNA replication and the division cycle in Escherichia coli. J Mol Biol 23: 99–112.

71. SchneiderCA, RasbandWS, EliceiriKW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675.

72. Levin PA (2002) Light Microscopy Techniques for Bacterial Cell Biology. In: Sansonetti PJ, Zychlinsky A, editors. Molecular Cellular Microbiology. London: Academic Press, Ltd. pp. 115–132.

73. HaeusserDP, SchwartzRL, SmithAM, OatesME, LevinPA (2004) EzrA prevents aberrant cell division by modulating assembly of the cytoskeletal protein FtsZ. Mol Microbiol 52: 801–814.

74. IngermanE, NunnariJ (2005) A continuous, regenerative coupled GTPase assay for dynamin-related proteins. Methods Enzymol 404: 611–619.

75. KanehisaM, GotoS (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30.

76. TanabeM, KanehisaM (2012) Using the KEGG database resource. Curr Protoc Bioinformatics Chapter 1: Unit1 12.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#