#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Dual Role for SOX10 in the Maintenance of the Postnatal Melanocyte Lineage and the Differentiation of Melanocyte Stem Cell Progenitors


During embryogenesis, the transcription factor, Sox10, drives the survival and differentiation of the melanocyte lineage. However, the role that Sox10 plays in postnatal melanocytes is not established. We show in vivo that melanocyte stem cells (McSCs) and more differentiated melanocytes express SOX10 but that McSCs remain undifferentiated. Sox10 knockout (Sox10fl; Tg(Tyr::CreER)) results in loss of both McSCs and differentiated melanocytes, while overexpression of Sox10 (Tg(DctSox10)) causes premature differentiation and loss of McSCs, leading to hair graying. This suggests that levels of SOX10 are key to normal McSC function and Sox10 must be downregulated for McSC establishment and maintenance. We examined whether the mechanism of Tg(DctSox10) hair graying is through increased expression of Mitf, a target of SOX10, by asking if haploinsufficiency for Mitf (Mitfvga9) can rescue hair graying in Tg(DctSox10) animals. Surprisingly, Mitfvga9 does not mitigate but exacerbates Tg(DctSox10) hair graying suggesting that MITF participates in the negative regulation of Sox10 in McSCs. These observations demonstrate that while SOX10 is necessary to maintain the postnatal melanocyte lineage it is simultaneously prevented from driving differentiation in the McSCs. This data illustrates how tissue-specific stem cells can arise from lineage-specified precursors through the regulation of the very transcription factors important in defining that lineage.


Vyšlo v časopise: A Dual Role for SOX10 in the Maintenance of the Postnatal Melanocyte Lineage and the Differentiation of Melanocyte Stem Cell Progenitors. PLoS Genet 9(7): e32767. doi:10.1371/journal.pgen.1003644
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003644

Souhrn

During embryogenesis, the transcription factor, Sox10, drives the survival and differentiation of the melanocyte lineage. However, the role that Sox10 plays in postnatal melanocytes is not established. We show in vivo that melanocyte stem cells (McSCs) and more differentiated melanocytes express SOX10 but that McSCs remain undifferentiated. Sox10 knockout (Sox10fl; Tg(Tyr::CreER)) results in loss of both McSCs and differentiated melanocytes, while overexpression of Sox10 (Tg(DctSox10)) causes premature differentiation and loss of McSCs, leading to hair graying. This suggests that levels of SOX10 are key to normal McSC function and Sox10 must be downregulated for McSC establishment and maintenance. We examined whether the mechanism of Tg(DctSox10) hair graying is through increased expression of Mitf, a target of SOX10, by asking if haploinsufficiency for Mitf (Mitfvga9) can rescue hair graying in Tg(DctSox10) animals. Surprisingly, Mitfvga9 does not mitigate but exacerbates Tg(DctSox10) hair graying suggesting that MITF participates in the negative regulation of Sox10 in McSCs. These observations demonstrate that while SOX10 is necessary to maintain the postnatal melanocyte lineage it is simultaneously prevented from driving differentiation in the McSCs. This data illustrates how tissue-specific stem cells can arise from lineage-specified precursors through the regulation of the very transcription factors important in defining that lineage.


Zdroje

1. TobinDJ, PausR (2001) Graying: gerontobiology of the hair follicle pigmentary unit. Exp Gerontol 36: 29–54.

2. NishimuraEK, JordanSA, OshimaH, YoshidaH, OsawaM, et al. (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416: 854–860 doi:10.1038/416854a

3. MakS-S, MoriyamaM, NishiokaE, OsawaM, NishikawaS-I (2006) Indispensable role of Bcl2 in the development of the melanocyte stem cell. Dev Biol 291: 144–153 doi:10.1016/j.ydbio.2005.12.025

4. OsawaM, EgawaG, MakS-S, MoriyamaM, FreterR, et al. (2005) Molecular characterization of melanocyte stem cells in their niche. Development 132: 5589–5599 doi:10.1242/dev.02161

5. BotchkarevaNV, BotchkarevVA, GilchrestBA (2003) Fate of melanocytes during development of the hair follicle pigmentary unit. J Investig Dermatol Symp Proc 8: 76–79 doi:10.1046/j.1523-1747.2003.12176.x

6. BotchkarevaNV, KhlgatianM, LongleyBJ, BotchkarevVA, GilchrestBA (2001) SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit. FASEB J 15: 645–658 doi:10.1096/fj.00-0368com

7. NishimuraEK, SuzukiM, IgrasV, DuJ, LonningS, et al. (2010) Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell 6: 130–140 doi:10.1016/j.stem.2009.12.010

8. NishimuraEK (2005) Mechanisms of Hair Graying: Incomplete Melanocyte Stem Cell Maintenance in the Niche. Science 307: 720–724 doi:10.1126/science.1099593

9. RabbaniP, TakeoM, ChouW, MyungP, BosenbergM, et al. (2011) Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145: 941–955 doi:10.1016/j.cell.2011.05.004

10. InomataK, AotoT, BinhNT, OkamotoN, TanimuraS, et al. (2009) Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 137: 1088–1099 doi:10.1016/j.cell.2009.03.037

11. MoriyamaM, DurhamA-D, MoriyamaH, HasegawaK, NishikawaS-I, et al. (2008) Multiple roles of Notch signaling in the regulation of epidermal development. Dev Cell 14: 594–604 doi:10.1016/j.devcel.2008.01.017

12. LangD, LuMM, HuangL, EnglekaKA, ZhangM, et al. (2005) Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433: 884–887 doi:10.1038/nature03292

13. TobinD, SlominskiA, BotchkarevV, PausR (1999) The fate of hair follicle melanocytes during the hair growth cycle. J Investig Dermatol Symp Proc 4: 323–332.

14. TobinD, HagenE, BotchkarevV, PausR (1998) Do hair bulb melanocytes undergo apotosis during hair follicle regression (catagen)? J Invest Dermatol 111: 941–947.

15. HouL, ArnheiterH, PavanWJ (2006) Interspecies difference in the regulation of melanocyte development by SOX10 and MITF. Proc Natl Acad Sci USA 103: 9081–9085 doi:10.1073/pnas.0603114103

16. MurisierF, GuichardS, BeermannF (2007) The tyrosinase enhancer is activated by Sox10 and Mitf in mouse melanocytes. Pigment Cell Res 20: 173–184 doi:10.1111/j.1600-0749.2007.00368.x

17. JiaoZ, MollaaghababaR, PavanWJ, AntonellisA, GreenED, et al. (2004) Direct interaction of Sox10 with the promoter of murine Dopachrome Tautomerase (Dct) and synergistic activation of Dct expression with Mitf. Pigment Cell Res 17: 352–362 doi:10.1111/j.1600-0749.2004.00154.x

18. MurisierF, GuichardS, BeermannF (2006) A conserved transcriptional enhancer that specifies Tyrp1 expression to melanocytes. Dev Biol 298: 644–655 doi:10.1016/j.ydbio.2006.05.011

19. MollaaghababaR, PavanWJ (2003) The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. Oncogene 22: 3024–3034 doi:10.1038/sj.onc.1206442

20. StoltCC, LommesP, HillgärtnerS, WegnerM (2008) The transcription factor Sox5 modulates Sox10 function during melanocyte development. Nucleic Acids Res 36: 5427–5440 doi:10.1093/nar/gkn527

21. Southard-SmithEM, KosL, PavanWJ (1998) SOX10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18: 60–64 doi:10.1038/ng0198-60

22. LanePW, LiuHM (1984) Association of megacolon with a new dominant spotting gene (Dom) in the mouse. J Hered 75: 435–439.

23. InoueK, TanabeY, LupskiJR (1999) Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann Neurol 46: 313–318.

24. HerbarthB, PingaultV, BondurandN, KuhlbrodtK, Hermans-BorgmeyerI, et al. (1998) Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci USA 95: 5161–5165.

25. HarrisML, PavanWJ (2013) CreER(T) (2) transgene. Pigment Cell Melanoma Res 26: 269–274 doi:10.1111/pcmr.12048

26. MotohashiT, YamanakaK, ChibaK, MiyajimaK, AokiH, et al. (2011) Neural crest cells retain their capability for multipotential differentiation even after lineage-restricted stages. Dev Dyn 240: 1681–1693 doi:10.1002/dvdy.22658

27. CorpeningJC, DealKK, CantrellVA, SkeltonSB, BuehlerDP, et al. (2011) Isolation and live imaging of enteric progenitors based on Sox10-Histone2BVenus transgene expression. Genesis 49: 599–618 doi:10.1002/dvg.20748

28. ShibataS, YasudaA, Renault-MiharaF, SuyamaS, KatohH, et al. (2010) Sox10-Venus mice: a new tool for real-time labeling of neural crest lineage cells and oligodendrocytes. Mol Brain 3: 31 doi:10.1186/1756-6606-3-31

29. Aubin-HouzelsteinG, Djian-ZaoucheJ, BernexF, GadinS, DelmasV, et al. (2008) Melanoblasts' proper location and timed differentiation depend on Notch/RBP-J signaling in postnatal hair follicles. J Invest Dermatol 128: 2686–2695 doi:10.1038/jid.2008.120

30. GrecoV, ChenT, RendlM, SchoberM, PasolliHA, et al. (2009) A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4: 155–169 doi:10.1016/j.stem.2008.12.009

31. SharovA, TobinDJ, SharovaTY, AtoyanR, BotchkarevVA (2005) Changes in different melanocyte populations during hair follicle involution (catagen). J Invest Dermatol 125: 1259–1267 doi:10.1111/j.0022-202X.2005.23959.x

32. Nishikawa-TorikaiS, OsawaM, NishikawaS-I (2011) Functional Characterization of Melanocyte Stem Cells in Hair Follicles. J Invest Dermatol 131: 2358–67 doi:10.1038/jid.2011.195

33. FinzschM, SchreinerS, KichkoT, ReehP, TammER, et al. (2010) Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage. J Cell Biol 189: 701–712 doi:10.1083/jcb.200912142

34. BosenbergM, MuthusamyV, CurleyDP, WangZ, HobbsC, et al. (2006) Characterization of melanocyte-specific inducible Cre recombinase transgenic mice. Genesis 44: 262–267 doi:10.1002/dvg.20205

35. HakamiR, HouL, BaxterL, LoftusS, Southard-SmithE, et al. (2006) Genetic evidence does not support direct regulation of EDNRB by SOX10 in migratory neural crest and the melanocyte lineage. Mech Dev 123: 124–134.

36. HodgkinsonCA, MooreKJ, NakayamaA, SteingrímssonE, CopelandNG, et al. (1993) Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74: 395–404.

37. KimJ, LoL, DormandE, AndersonDJ (2003) SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38: 17–31.

38. McKeownS, LeeV, Bronner-FraserM, NewgreenD, FarlieP (2005) Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation. Dev Dyn 233: 430–44.

39. KelshRN (2006) Sorting outSox10 functions in neural crest development. Bioessays 28: 788–798 doi:10.1002/bies.20445

40. CarreiraS, GoodallJ, DenatL, RodriguezM, NuciforoP, et al. (2006) Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 20: 3426–3439 doi:10.1101/gad.406406

41. DuttonJR, AntonellisA, CarneyTJ, RodriguesFSLM, PavanWJ, et al. (2008) An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10. BMC Dev Biol 8: 105 doi:10.1186/1471-213X-8-105

42. ZhuYT, JiaY, HuL, QiC, PrasadMK, et al. (2010) Peroxisome-proliferator-activated receptor-binding protein (PBP) is essential for the growth of active Notch4-immortalized mammary epithelial cells by activating SOX10 expression. Biochem J 425: 435–444 doi:10.1042/BJ20091237

43. ShahM, BhoumikA, GoelV, DewingA, BreitwieserW, et al. (2010) A role for ATF2 in regulating MITF and melanoma development. PLoS Genet 6: e1001258 doi:10.1371/journal.pgen.1001258

44. Van OtterlooE, LiW, GarnettA, CattellM, MedeirosDM, et al. (2012) Novel Tfap2-mediated control of soxE expression facilitated the evolutionary emergence of the neural crest. Development 139: 720–730 doi:10.1242/dev.071308

45. PotterfSB, FurumuraM, DunnKJ, ArnheiterH, PavanWJ (2000) Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet 107: 1–6.

46. BondurandN, PingaultV, GoerichDE, LemortN, SockE, et al. (2000) Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet 9: 1907–1917.

47. LudwigA, RehbergS, WegnerM (2004) Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett 556: 236–244.

48. HuberWE, PriceER, WidlundHR, DuJ, DavisIJ, et al. (2003) A tissue-restricted cAMP transcriptional response: SOX10 modulates alpha-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes. J Biol Chem 278: 45224–45230 doi:10.1074/jbc.M309036200

49. LiuA, LiJ, Marin-HusstegeM, KageyamaR, FanY, et al. (2006) A molecular insight of Hes5-dependent inhibition of myelin gene expression: old partners and new players. EMBO J 25: 4833–4842 doi:10.1038/sj.emboj.7601352

50. MoriyamaM, OsawaM, MakS-S, OhtsukaT, YamamotoN, et al. (2006) Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J Cell Biol 173: 333–339 doi:10.1083/jcb.200509084

51. KumanoK, MasudaS, SataM, SaitoT, LeeS-Y, et al. (2008) Both Notch1 and Notch2 contribute to the regulation of melanocyte homeostasis. Pigment Cell Melanoma Res 21: 70–78 doi:10.1111/j.1755-148X.2007.00423.x

52. SchouweyK, DelmasV, LarueL, Zimber-StroblU, StroblLJ, et al. (2007) Notch1 and Notch2 receptors influence progressive hair graying in a dose-dependent manner. Dev Dyn 236: 282–289 doi:10.1002/dvdy.21000

53. GreenhillER, RoccoA, VibertL, NikaidoM, KelshRN (2011) An iterative genetic and dynamical modelling approach identifies novel features of the gene regulatory network underlying melanocyte development. PLoS Genet 7: e1002265 doi:10.1371/journal.pgen.1002265

54. GalibertMD, YavuzerU, DexterTJ, GodingCR (1999) Pax3 and regulation of the melanocyte-specific tyrosinase-related protein-1 promoter. J Biol Chem 274: 26894–26900.

55. la Serna deIL, OhkawaY, HigashiC, DuttaC, OsiasJ, et al. (2006) The microphthalmia-associated transcription factor requires SWI/SNF enzymes to activate melanocyte-specific genes. J Biol Chem 281: 20233–20241 doi:10.1074/jbc.M512052200

56. DuJ, MillerAJ, WidlundHR, HorstmannMA, RamaswamyS, et al. (2003) MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am J Pathol 163: 333–343 doi:10.1016/S0002-9440(10)63657-7

57. VetriniF, AuricchioA, DuJ, AngelettiB, FisherDE, et al. (2004) The microphthalmia transcription factor (Mitf) controls expression of the ocular albinism type 1 gene: link between melanin synthesis and melanosome biogenesis. Mol Cell Biol 24: 6550–6559 doi:10.1128/MCB.24.15.6550-6559.2004

58. LoercherAE, TankEMH, DelstonRB, HarbourJW (2005) MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol 168: 35–40 doi:10.1083/jcb.200410115

59. CarreiraS, GoodallJ, AksanI, La RoccaSA, GalibertM-D, et al. (2005) Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 433: 764–769 doi:10.1038/nature03269

60. HornyakTJ, HayesDJ, ChiuLY, ZiffEB (2001) Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf. Mech Dev 101: 47–59.

61. RowanS, ChenC-MA, YoungTL, FisherDE, CepkoCL (2004) Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10. Development 131: 5139–5152 doi:10.1242/dev.01300

62. BurmeisterM, NovakJ, LiangMY, BasuS, PloderL, et al. (1996) Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat Genet 12: 376–384 doi:10.1038/ng0496-376

63. AokiH, HaraA, MotohashiT, TakahiroKunisada (2011) Protective effect of Kit signaling for melanocyte stem cells against radiation-induced genotoxic stress. J Invest Dermatol 131: 1906–1915 doi:10.1038/jid.2011.148

64. ShakhovaO, ZinggD, SchaeferSM, HariL, CivenniG, et al. (2012) Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol 14: 882–90 doi:10.1038/ncb2535

65. SeongI, MinHJ, LeeJ-H, YeoC-Y, KangDM, et al. (2012) Sox10 controls migration of B16F10 melanoma cells through multiple regulatory target genes. PLoS ONE 7: e31477 doi:10.1371/journal.pone.0031477

66. BritschS, GoerichDE, RiethmacherD, PeiranoRI, RossnerM, et al. (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15: 66–78.

67. SorianoP (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21: 70–71 doi:10.1038/5007

68. TachibanaM, HaraY, VyasD, HodgkinsonC, FexJ, et al. (1992) Cochlear disorder associated with melanocyte anomaly in mice with a transgenic insertional mutation. Mol Cell Neurosci 3: 433–445.

69. Müller-RöverS, HandjiskiB, Van Der VeenC, EichmüllerS, FoitzikK, et al. (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117: 3–15 doi:10.1046/j.0022-202x.2001.01377.x

70. PausR, Müller-RöverS, Van Der VeenC, MaurerM, EichmüllerS, et al. (1999) A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol 113: 523–532 doi:10.1046/j.1523-1747.1999.00740.x

71. PetersEMJ, MaurerM, BotchkarevVA, JensenKD, WelkerP, et al. (2003) Kit is expressed by epithelial cells in vivo. J Invest Dermatol 121: 976–984 doi:10.1046/j.1523-1747.2003.12478.x

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#