#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Parallel Evolution of Auditory Genes for Echolocation in Bats and Toothed Whales


The ability of bats and toothed whales to echolocate is a remarkable case of convergent evolution. Previous genetic studies have documented parallel evolution of nucleotide sequences in Prestin and KCNQ4, both of which are associated with voltage motility during the cochlear amplification of signals. Echolocation involves complex mechanisms. The most important factors include cochlear amplification, nerve transmission, and signal re-coding. Herein, we screen three genes that play different roles in this auditory system. Cadherin 23 (Cdh23) and its ligand, protocadherin 15 (Pcdh15), are essential for bundling motility in the sensory hair. Otoferlin (Otof) responds to nerve signal transmission in the auditory inner hair cell. Signals of parallel evolution occur in all three genes in the three groups of echolocators—two groups of bats (Yangochiroptera and Rhinolophoidea) plus the dolphin. Significant signals of positive selection also occur in Cdh23 in the Rhinolophoidea and dolphin, and Pcdh15 in Yangochiroptera. In addition, adult echolocating bats have higher levels of Otof expression in the auditory cortex than do their embryos and non-echolocation bats. Cdh23 and Pcdh15 encode the upper and lower parts of tip-links, and both genes show signals of convergent evolution and positive selection in echolocators, implying that they may co-evolve to optimize cochlear amplification. Convergent evolution and expression patterns of Otof suggest the potential role of nerve and brain in echolocation. Our synthesis of gene sequence and gene expression analyses reveals that positive selection, parallel evolution, and perhaps co-evolution and gene expression affect multiple hearing genes that play different roles in audition, including voltage and bundle motility in cochlear amplification, nerve transmission, and brain function.


Vyšlo v časopise: Parallel Evolution of Auditory Genes for Echolocation in Bats and Toothed Whales. PLoS Genet 8(6): e32767. doi:10.1371/journal.pgen.1002788
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002788

Souhrn

The ability of bats and toothed whales to echolocate is a remarkable case of convergent evolution. Previous genetic studies have documented parallel evolution of nucleotide sequences in Prestin and KCNQ4, both of which are associated with voltage motility during the cochlear amplification of signals. Echolocation involves complex mechanisms. The most important factors include cochlear amplification, nerve transmission, and signal re-coding. Herein, we screen three genes that play different roles in this auditory system. Cadherin 23 (Cdh23) and its ligand, protocadherin 15 (Pcdh15), are essential for bundling motility in the sensory hair. Otoferlin (Otof) responds to nerve signal transmission in the auditory inner hair cell. Signals of parallel evolution occur in all three genes in the three groups of echolocators—two groups of bats (Yangochiroptera and Rhinolophoidea) plus the dolphin. Significant signals of positive selection also occur in Cdh23 in the Rhinolophoidea and dolphin, and Pcdh15 in Yangochiroptera. In addition, adult echolocating bats have higher levels of Otof expression in the auditory cortex than do their embryos and non-echolocation bats. Cdh23 and Pcdh15 encode the upper and lower parts of tip-links, and both genes show signals of convergent evolution and positive selection in echolocators, implying that they may co-evolve to optimize cochlear amplification. Convergent evolution and expression patterns of Otof suggest the potential role of nerve and brain in echolocation. Our synthesis of gene sequence and gene expression analyses reveals that positive selection, parallel evolution, and perhaps co-evolution and gene expression affect multiple hearing genes that play different roles in audition, including voltage and bundle motility in cochlear amplification, nerve transmission, and brain function.


Zdroje

1. LiYLiuZShiPZhangJ 2010 The hearing gene Prestin unites echolocating bats and whales. Curr Biol 20 R55 R56

2. LiuYCottonJAShenBHanXRossiterSJ 2010 Convergent sequence evolution between echolocating bats and dolphins. Curr Biol 20 R53 R54

3. LiuZLiSWangWXuDMurphyRW 2011 Parallel evolution of KCNQ4 in echolocating bats. PLoS ONE 6 e26618 doi:10.1371/journal.pone.0026618

4. SpeakmanJR 1993 The evolution of echolocation for predation. Symp zool Soc Lond 65 39 63

5. ArchVSNarinsPM 2008 ‘Silent’ signals: selective forces acting on ultrasonic communication systems in terrestrial vertebrates. Anim Behav 76 1423 1428

6. FettiplaceR 2006 Active hair bundle movements in auditory hair cells. J Physiol 576 29 36

7. AshmoreJAvanPBrownellWEDallosPDierkesK 2010 The remarkable cochlear amplifier. Hear Res 266 1 17

8. ZhengJShenWHeDZZLongKBMadisonLD 2000 Prestin is the motor protein of cochlear outer hair cells. Nature 405 149 155

9. LiGWangJRossiterSJJonesGCottonJA 2008 The hearing gene Prestin reunites echolocating bats. Proc Natl Acad Sci U S A 105 13959 13964

10. LiuYHanNFranchiniLFXuHPisciottanoF 2012 The voltage-gated potassium channel subfamily KQT member 4 (KCNQ4) displays parallel evolution in echolocating bats. Mol Biol Evol 29 1441 1450

11. DallosP 2008 Cochlear amplification, outer hair cells and prestin. Curr Opin Neurobiol 18 370 376

12. Di PalmaFPellegrinoRNoben-TrauthK 2001 Genomic structure, alternative splice forms and normal and mutant alleles of cadherin 23 (Cdh23). Gene 281 31 41

13. BolzHVon BrederlowBRamírezABrydaECKutscheK 2001 Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat Genet 27 108 112

14. AlagramamKNMurciaCLKwonHYPawlowskiKSWrightCG 2001 The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nat Genet 27 99 102

15. AhmedZMRiazuddinSWilcoxER 2003 The molecular genetics of Usher syndrome. Clin Genet 63 431 444

16. KazmierczakPSakaguchiHTokitaJWilson-KubalekEMMilliganRA 2007 Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449 87 91

17. SiemensJLilloCDumontRAReynoldsAWilliamsDS 2004 Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428 950 955

18. ZakMPfisterMBlinN 2011 The otoferlin interactome in neurosensory hair cells: significance for synaptic vesicle release and trans-Golgi network (Review). Int J Mol Med 28 311 314

19. YasunagaSGratiMCohen-SalmonMEl-AmraouiAMustaphaM 1999 A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat Genet 21 363 369

20. HousemanMJJacksonAPAl-GazaliLIBadinRARobertsE 2001 A novel mutation in a family with non-syndromic sensorineural hearing loss that disrupts the newly characterised OTOF long isoforms. J Med Genet 38 E25

21. VargaRKelleyPMKeatsBJStarrALealSM 2003 Non-syndromic recessive auditory neuropathy is the result of mutations in the otoferlin (OTOF) gene. J Med Genet 40 45 50

22. RouxISafieddineSNouvianRGratiMSimmlerM 2006 Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127 277 289

23. SchugNBraigCZimmermannUEngelJWinterH 2006 Differential expression of otoferlin in brain, vestibular system, immature and mature cochlea of the rat. Eur J Neurosci 24 3372 3380

24. FayRRPopperAN 2000 Evolution of hearing in vertebrates: the inner ears and processing. Hear Res 149 1 10

25. SeidmanMDAhmadNBaiU 2002 Molecular mechanisms of age-related hearing loss. Ageing Res Rev 1 331 343

26. TeelingECSpringerMSMadsenOBatesPO'BrienSJ 2005 A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307 580 584

27. MurphyWJEizirikEO'BrienSJMadsenOScallyM 2001 Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294 2348 2351

28. MurphyWJEizirikEJohnsonWEZhangYPRyderOA 2001 Molecular phylogenetics and the origins of placental mammals. Nature 409 614 618

29. AdamsRAPedersenSC 2000 Ontogeny, Functional Ecology, and Evolution of Bats New York Cambridge University Press 138

30. PerrinWFWürsigBThewissenJGM 2008 Encyclopedia of Marine Mammals San Diego, CA Academic Press 360

31. AhmedZMGoodyearRRiazuddinSLagzielALeganPK 2006 The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15. J Neurosci 26 7022 7034

32. Di PalmaFHolmeRHBrydaECBelyantsevaIAPellegrinoR 2001 Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat Genet 27 103 107

33. ZakonHH 2002 Convergent evolution on the molecular level. Brain Behav Evol 59 250 261

34. CastoeTAde KoningAPKimHMGuWNoonanBP 2009 Evidence for an ancient adaptive episode of convergent molecular evolution. Proc Natl Acad Sci U S A 106 8986 8991

35. ZhangJ 2006 Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys. Nat Genet 38 819 823

36. YokoyamaSRadlwimmerFB 1998 The ‘five-sites’ rule and the evolution of red and green color vision in mammals. Mol Biol Evol 15 560 567

37. DallosPWuXCheathamMAGaoJZhengJ 2008 Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58 333 339

38. Mellado LagardeMMDrexlMLukashkinaVALukashkinANRussellIJ 2008 Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier. Nat Neurosci 11 746 748

39. KennedyHJCrawfordACFettiplaceR 2005 Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433 880 883

40. ChanDKHudspethAJ 2005 Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8 149 155

41. RauscheckerJPShannonRV 2002 Sending sound to the brain. Science 295 1025 1029

42. LibermanMCGaoJHeDZWuXJiaS 2002 Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419 300 304

43. AlbertJTWinterHSchaechingerTJWeberTWangX 2007 Voltage-sensitive Prestin orthologue expressed in zebrafish hair cells. J Physiol 580 451 461

44. CheathamMAHuynhKHGaoJZuoJDallosP 2004 Cochlear function in Prestin knockout mice. J Physiol 560 821 830

45. AssadJACoreyDP 1992 An active motor model for adaptation by vertebrate hair cells. J Neurosci 12 3291 3309

46. HowardJHudspethAJ 1988 Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Neuron 1 189 199

47. SotomayorMWeihofenWAGaudetRCoreyDP 2010 Structural determinants of cadherin-23 function in hearing and deafness. Neuron 66 85 100

48. ZhengQYYanDOuyangXMDuLLYuH 2005 Digenic inheritance of deafness caused by mutations in genes encoding cadherin 23 and protocadherin 15 in mice and humans. Hum Mol Genet 14 103 111

49. PerrinWFWürsigBThewissenJGM 2008 Encyclopedia of Marine Mammals San Diego, CA Academic Press 1126 1127

50. ShanahanCMCaryNRMetcalfeJCWeissbergPL 1994 High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 93 2393 2402

51. UguccioniMMackayCROchensbergerBLoetscherPRhisS 1997 High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J Clin Invest 100 1137 1143

52. ChermakGDMusiekFE 1997 Central Auditory Processing Disorders: New Perspectives San Diego Singular Publishing Group Press

53. SambrookJRussellDW 2001 Molecular Cloning: A Laboratory Manual New York Cold Spring Harbor Laboratory Press

54. ThompsonJDGibsonTJPlewniakFJeanmouginFHigginsDG 1997 The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 4876 4882

55. PosadaD 2008 jModelTest: phylogenetic model averaging. Mol Biol Evol 25 1253 1256

56. PosadaD 2009 Selection of models of DNA evolution with jModelTest. Methods Mol Biol 537 93 112

57. DarribaDTaboadaGLDoalloRPosadaD 2011 ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27 1164 1165

58. SwoffordDL 2003 PAUP*: phylogenetic analysis using parsimony (* and other methods). Version 4.0 Sunderland, Massachusetts Sinauer Associates

59. HuelsenbeckJPRonquistF 2001 MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17 754 755

60. RonquistFHuelsenbeckJP 2003 MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 1572 1574

61. LiWHWuCILuoCC 1985 A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2 150 174

62. ZhangJNeiM 1997 Accuracies of ancestral amino acid sequences inferred by the parsimony, likelihood, and distance methods. J Mol Evol 44 S139 146

63. ZhangJKumarS 1997 Detection of convergent and parallel evolution at the amino acid sequence level. Mol Biol Evol 14 527 536

64. YangZ 2007 PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24 1586 1591

65. TalairachJTournouxP 1988 Co-Planar Stereotaxic Atlas of the Human Brain New York Thieme Press

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#