#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Loss of the BMP Antagonist, SMOC-1, Causes Ophthalmo-Acromelic (Waardenburg Anophthalmia) Syndrome in Humans and Mice


Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1tm1a) that reduces mRNA to ∼10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1tm1a/tm1a). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1tm1a/tm1a embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice.


Vyšlo v časopise: Loss of the BMP Antagonist, SMOC-1, Causes Ophthalmo-Acromelic (Waardenburg Anophthalmia) Syndrome in Humans and Mice. PLoS Genet 7(7): e32767. doi:10.1371/journal.pgen.1002114
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002114

Souhrn

Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1tm1a) that reduces mRNA to ∼10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1tm1a/tm1a). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1tm1a/tm1a embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice.


Zdroje

1. MorrisonDFitzPatrickDHansonIWilliamsonKvan HeyningenV 2002 National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology. J Med Genet 39 16 22

2. FantesJRaggeNKLynchSAMcGillNICollinJR 2003 Mutations in SOX2 cause anophthalmia. Nat Genet 33 461 463

3. RaggeNKLorenzBSchneiderABushbyKde SanctisL 2005 SOX2 anophthalmia syndrome. Am J Med Genet A 135 1 7 discussion 8

4. WilliamsonKAHeverAMRaingerJRogersRCMageeA 2006 Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Hum Mol Genet 15 1413 1422

5. RaggeNKBrownAGPoloschekCMLorenzBHendersonRA 2005 Heterozygous mutations of OTX2 cause severe ocular malformations. Am J Hum Genet 76 1008 1022

6. HendersonRHWilliamsonKAKennedyJSWebsterARHolderGE 2009 A rare de novo nonsense mutation in OTX2 causes early onset retinal dystrophy and pituitary dysfunction. Mol Vis 15 2442 2447

7. PasuttoFStichtHHammersenGGillessen-KaesbachGFitzpatrickDR 2007 Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am J Hum Genet 80 550 560

8. BakraniaPEfthymiouMKleinJCSaltABunyanDJ 2008 Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways. Am J Hum Genet 82 304 319

9. WaardenburgPJ 1961 Autosomally-recessive anophthalmia with malformations of the hands and feet. P. J. WaardenburgAFaDK Vol I. Assen, The Netherlands: Royal Van Gorcum 773

10. AbouzeidHBoissetGFavezTYoussefMMarzoukI 2011 Mutations in the SPARC-related modular calcium-binding protein 1 gene, SMOC1, cause waardenburg anophthalmia syndrome. Am J Hum Genet 88 92 98

11. LIAGSabarinathan DK AK 1994 Microphthalmia and distal limb abnormalities in a child of consanguineous parents. Clin Dysmorphol 3 258 262

12. CaksenHOdabasDOnerAFAbuhandanMCalebiV 2002 Ophthalmo-acromelic syndrome in a Turkish infant: case report. East Afr Med J 79 339 340

13. CoguluOOzkinayFGunduzCSapmazGOzkinayC 2000 Waardenburg anophthalmia syndrome: report and review. Am J Med Genet 90 173 174

14. GalassoCBombardieriRCerminaraCStranciGCuratoloP 2007 Anophthalmia-Waardenburg syndrome with expanding phenotype: does neural crest play a role? J Child Neurol 22 1252 1255

15. GambhirPSGambhirSPBankarSM 2010 Ophthalmoacromelic syndrome: two further cases expanding the phenotype. Clin Dysmorphol 19 91 94

16. GaravelliLPedoriSDal ZottoRFranchiFMarinelliM 2006 Anophthalmos with limb anomalies (Waardenburg opththalmo-acromelic syndrome): report of a new Italian case with renal anomaly and review. Genet Couns 17 449 455

17. HamanoueHMegarbaneATohmaTNishimuraAMizuguchiT 2009 A locus for ophthalmo-acromelic syndrome mapped to 10p11.23. Am J Med Genet A 149A 336 342

18. KaraFYesildaglarNTuncerRASemerciNOnatN 2002 A case report of prenatally diagnosed ophthalmo-acromelic syndrome type Waardenburg. Prenat Diagn 22 395 397

19. KhanAZafarSN 2008 Pierre Robin sequence with unilateral anophthalmia and lower limb oligodactyly: an unusual presentation of ophthalmoacromelic syndrome? Clin Dysmorphol 17 187 188

20. Le MerrerMNessmannCBriardMLMaroteauxP 1988 Ophthalmo-acromelic syndrome. Ann Genet 31 226 229

21. MegarbaneASouratyNTamrazJ 1998 Ophthalmo-acromelic syndrome (Waardenburg) with split hand and polydactyly. Genet Couns 9 195 199

22. PallottaRDallapiccolaB 1984 A syndrome with true anophthalmia, hand-foot defects and mental retardation. Ophthalmic Paediatr Genet 4 19 23

23. QuarrellOW 1995 Ophthalmo acromelic syndrome. Clin Dysmorphol 4 272 273

24. Richieri-CostaAGollopTROttoPG 1983 Brief clinical report: autosomal recessive anophthalmia with multiple congenital abnormalities–type Waardenburg. Am J Med Genet 14 607 615

25. SayliBSAkarsuANAltanS 1995 Anophthalmos-syndactyly (Waardenburg) syndrome without oligodactyly of toes. Am J Med Genet 58 18 20

26. SuyugulZSevenMHacihanefiogluSKartalASuyugulN 1996 Anophthalmia-Waardenburg syndrome: a report of three cases. Am J Med Genet 62 391 397

27. TeiberMLGarridoJABarreiroCZ 2007 Ophthalmo-acromelic syndrome: report of a case with vertebral anomalies. Am J Med Genet A 143A 2460 2462

28. TekinMTutarEArsanSAtayGBodurthaJ 2000 Ophthalmo-acromelic syndrome: report and review. Am J Med Genet 90 150 154

29. TraboulsiEINasrAMFahdSDJabbourNMDer KaloustianVM 1984 Waardenburg's recessive anophthalmia syndrome. Ophthalmic Paediatr Genet 4 13 18

30. HopkinsDRKelesSGreenspanDS 2007 The bone morphogenetic protein 1/Tolloid-like metalloproteinases. Matrix Biol 26 508 523

31. SieberCKopfJHiepenCKnausP 2009 Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev 20 343 355

32. MiyazonoKKamiyaYMorikawaM 2010 Bone morphogenetic protein receptors and signal transduction. J Biochem 147 35 51

33. HuMCWassermanDHartwigSRosenblumND 2004 p38MAPK acts in the BMP7-dependent stimulatory pathway during epithelial cell morphogenesis and is regulated by Smad1. J Biol Chem 279 12051 12059

34. De RobertisEM 2006 Spemann's organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol 7 296 302

35. WillsAHarlandRMKhokhaMK 2006 Twisted gastrulation is required for forebrain specification and cooperates with Chordin to inhibit BMP signaling during X. tropicalis gastrulation. Dev Biol 289 166 178

36. AmbrosioALTaelmanVFLeeHXMetzingerCACoffinierC 2008 Crossveinless-2 Is a BMP feedback inhibitor that binds Chordin/BMP to regulate Xenopus embryonic patterning. Dev Cell 15 248 260

37. DaleLEvansWGoodmanSA 2002 Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development. Mech Dev 119 177 190

38. YanXLinZChenFZhaoXChenH 2009 Human BAMBI cooperates with Smad7 to inhibit transforming growth factor-beta signaling. J Biol Chem 284 30097 30104

39. VannahmeCSmythNMiosgeNGoslingSFrieC 2002 Characterization of SMOC-1, a novel modular calcium-binding protein in basement membranes. J Biol Chem 277 37977 37986

40. VannahmeCGoslingSPaulssonMMaurerPHartmannU 2003 Characterization of SMOC-2, a modular extracellular calcium-binding protein. Biochem J 373 805 814

41. NovinecMKordisDTurkVLenarcicB 2006 Diversity and evolution of the thyroglobulin type-1 domain superfamily. Mol Biol Evol 23 744 755

42. ThomasJTCanelosPLuytenFPMoosMJ 2009 Xenopus SMOC-1 Inhibits bone morphogenetic protein signaling downstream of receptor binding and is essential for postgastrulation development in Xenopus. J Biol Chem 284 18994 19005

43. FriedelRHSeisenbergerCKaloffCWurstW 2007 EUCOMM–the European conditional mouse mutagenesis program. Brief Funct Genomic Proteomic 6 180 185

44. HitzelCKanzlerHKonigAKummerMPBrixK 2000 Thyroglobulin type-I-like domains in invariant chain fusion proteins mediate resistance to cathepsin L digestion. FEBS Lett 485 67 70

45. PungercicGDolencIDolinarMBevecTJenkoS 2002 Individual recombinant thyroglobulin type-1 domains are substrates for lysosomal cysteine proteinases. Biol Chem 383 1809 1812

46. LuJQianJKepplerDCardosoWV 2007 Cathespin H is an Fgf10 target involved in Bmp4 degradation during lung branching morphogenesis. J Biol Chem 282 22176 22184

47. StopperGFWagnerGP 2007 Inhibition of Sonic hedgehog signaling leads to posterior digit loss in Ambystoma mexicanum: parallels to natural digit reduction in urodeles. Dev Dyn 236 321 331

48. TowersMMahoodRYinYTickleC 2008 Integration of growth and specification in chick wing digit-patterning. Nature 452 882 886

49. KatagiriTBoorlaSFrendoJLHoganBLKarsentyG 1998 Skeletal abnormalities in doubly heterozygous Bmp4 and Bmp7 mice. Dev Genet 22 340 348

50. RobertB 2007 Bone morphogenetic protein signaling in limb outgrowth and patterning. Dev Growth Differ 49 455 468

51. AsheHLBriscoeJ 2006 The interpretation of morphogen gradients. Development 133 385 394

52. SchwankGBaslerK 2010 Regulation of organ growth by morphogen gradients. Cold Spring Harb Perspect Biol 2 a001669

53. AffolterMBaslerK 2007 The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nat Rev Genet 8 663 674

54. VuilleumierRSpringhornAPattersonLKoidlSHammerschmidtM 2010 Control of Dpp morphogen signalling by a secreted feedback regulator. Nat Cell Biol 12 611 617

55. RoguljaDIrvineKD 2005 Regulation of cell proliferation by a morphogen gradient. Cell 123 449 461

56. MaatoukDMChoiKSBouldinCMHarfeBD 2009 In the limb AER Bmp2 and Bmp4 are required for dorsal-ventral patterning and interdigital cell death but not limb outgrowth. Dev Biol 327 516 523

57. Pajni-UnderwoodSWilsonCPElderCMishinaYLewandoskiM 2007 BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling. Development 134 2359 2368

58. ChangBSmithRSPetersMSavinovaOVHawesNL 2001 Haploinsufficient Bmp4 ocular phenotypes include anterior segment dysgenesis with elevated intraocular pressure. BMC Genet 2 18

59. FurutaYHoganBL 1998 BMP4 is essential for lens induction in the mouse embryo. Genes Dev 12 3764 3775

60. SuzukiSMarazitaMLCooperMEMiwaNHingA 2009 Mutations in BMP4 are associated with subepithelial, microform, and overt cleft lip. Am J Hum Genet 84 406 411

61. OkadaIHamanoueHTeradaKTohmaTMegarbaneA 2011 SMOC1 is essential for ocular and limb development in humans and mice. Am J Hum Genet 88 30 41

62. HarewoodLLiuMKeelingJHowatsonAWhitefordM 2010 Bilateral renal agenesis/hypoplasia/dysplasia (BRAHD): postmortem analysis of 45 cases with breakpoint mapping of two de novo translocations. PLoS ONE 5 e12375 doi:10.1371/journal.pone.0012375

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#