#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Recombination and Population Structure in


Salmonella enterica is a bacterial pathogen that causes enteric fever and gastroenteritis in humans and animals. Although its population structure was long described as clonal, based on high linkage disequilibrium between loci typed by enzyme electrophoresis, recent examination of gene sequences has revealed that recombination plays an important evolutionary role. We sequenced around 10% of the core genome of 114 isolates of enterica using a resequencing microarray. Application of two different analysis methods (Structure and ClonalFrame) to our genomic data allowed us to define five clear lineages within S. enterica subspecies enterica, one of which is five times older than the other four and two thirds of the age of the whole subspecies. We show that some of these lineages display more evidence of recombination than others. We also demonstrate that some level of sexual isolation exists between the lineages, so that recombination has occurred predominantly between members of the same lineage. This pattern of recombination is compatible with expectations from the previously described ecological structuring of the enterica population as well as mechanistic barriers to recombination observed in laboratory experiments. In spite of their relatively low level of genetic differentiation, these lineages might therefore represent incipient species.


Vyšlo v časopise: Recombination and Population Structure in. PLoS Genet 7(7): e32767. doi:10.1371/journal.pgen.1002191
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002191

Souhrn

Salmonella enterica is a bacterial pathogen that causes enteric fever and gastroenteritis in humans and animals. Although its population structure was long described as clonal, based on high linkage disequilibrium between loci typed by enzyme electrophoresis, recent examination of gene sequences has revealed that recombination plays an important evolutionary role. We sequenced around 10% of the core genome of 114 isolates of enterica using a resequencing microarray. Application of two different analysis methods (Structure and ClonalFrame) to our genomic data allowed us to define five clear lineages within S. enterica subspecies enterica, one of which is five times older than the other four and two thirds of the age of the whole subspecies. We show that some of these lineages display more evidence of recombination than others. We also demonstrate that some level of sexual isolation exists between the lineages, so that recombination has occurred predominantly between members of the same lineage. This pattern of recombination is compatible with expectations from the previously described ecological structuring of the enterica population as well as mechanistic barriers to recombination observed in laboratory experiments. In spite of their relatively low level of genetic differentiation, these lineages might therefore represent incipient species.


Zdroje

1. KauffmannF 1975 Classification of bacteria: a realistic scheme with special reference to the classification of Salmonella and Escherichia species. Munksgaard, Copenhagen

2. GrimontPWeillF 2007 Antigenic formulae of the Salmonella serovars, 9th Edition. WHO Collaborating Centre for Reference and Research on Salmonella, Institut Pasteur, Paris, France

3. UzzauSBrownDJWallisTRubinoSLeoriG 2000 Host adapted serotypes of Salmonella enterica. Epidemiol Infect 125 229 255

4. GalanisELo Fo WongDMPatrickMEBinszteinNCieslikA 2006 Web- based surveillance and global Salmonella distribution, 2000-2002. Emerg Infect Dis 12 381 388

5. BeltranPMusserJMHelmuthRFarmerJJFrerichsWM 1988 Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. Proceedings of the National Academy of Sciences of the United States of America 85 7753 7757

6. SelanderRKBeltranPSmithNHHelmuthRRubinFA 1990 Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect Immun 58 2262 2275

7. MaidenMCJBygravesJAFeilEMorelliGRussellJE 1998 Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. PNAS 95 3140 3145

8. MaidenMC 2006 Multilocus sequence typing of bacteria. Annual Review of Microbiology 60 561 588

9. KidgellCReichardUWainJLinzBTorpdahlM 2002 Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect Genet Evol 2 39 45

10. TorpdahlMSkovMNSandvangDBaggesenDL 2005 Genotypic characterization of Salmonella by multilocus sequence typing, pulsed-field gel electrophoresis and amplified fragment length polymorphism. J Microbiol Methods 63 173 184

11. SangalVHarbottleHMazzoniCJHelmuthRGuerraB 2010 Evolution and population structure of Salmonella enterica serovar Newport. J Bacteriol 192 6465 6476

12. FalushDTorpdahlMDidelotXConradDFWilsonDJ 2006 Mismatch induced speciation in Salmonella: model and data. Phil Trans R Soc B 361 2045 53

13. BrownEWMammelMKLeClercJECebulaTA 2003 Limited boundaries for extensive horizontal gene transfer among Salmonella pathogens. Proc Natl Acad Sci 100 15676 15681

14. OctaviaSLanR 2006 Frequent recombination and low level of clonality within Salmonella enterica subspecies I. Microbiology 152 1099 1108

15. DidelotXMaidenMC 2010 Impact of recombination on bacterial evolution. Trends Microbiol 18 315 322

16. TenaillonOSkurnikDPicardBDenamurE 2010 The population genetics of commensal Escherichia coli. Nature Reviews Microbiology 8 207 217

17. McClellandMSandersonKESpiethJCliftonSWLatreilleP 2001 Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413 852 856

18. ParkhillJDouganGJamesKDThomsonNRPickardD 2001 Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413 848 852

19. DengWLiouSRPlunkettGMayhewGFRoseDJ 2003 Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol 185 2330 2337

20. McClellandMSandersonKECliftonSWLatreillePPorwollikS 2004 Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet 36 1268 1274

21. ChiuCHTangPChuCHuSBaoQ 2005 The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res 33 1690 1698

22. DidelotXAchtmanMParkhillJThomsonNRFalushD 2007 A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: Convergence or divergence by homologous recombination? Genome Res 17 61 68

23. RoumagnacPWeillFXDolecekCBakerSBrisseS 2006 Evolutionary History of Salmonella Typhi. Science 314 1301 1304

24. HoltKEParkhillJMazzoniCJRoumagnacPWeillFX 2008 High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet 40 987 993

25. LioliosKChenIMAMavromatisKTavernarakisNHugenholtzP 2010 The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Research 38 D346 D354

26. FalushD 2009 Toward the Use of Genomics to Study Microevolutionary Change in Bacteria. PLoS Genet 5 e1000627 doi:10.1371/journal.pgen.1000627

27. DidelotXUrwinRMaidenMCJFalushD 2009 Genealogical typing of Neisseria meningitidis. Microbiology 155 3176 3186

28. BainsWSmithGC 1988 A novel method for nucleic acid sequence determination. J Theor Biol 135 303 307

29. ZwickMEMcafeeFCutlerDJReadTDRavelJ 2005 Microarray-based resequencing of multiple Bacillus anthracis isolates. Genome Biol 6 R10

30. SougakoffWRodrigueMTruffot-PernotCRenardMDurinN 2004 Use of a high-density DNA probe array for detecting mutations involved in rifampicin resistance in Mycobacterium tuberculosis. Clin Microbiol Infect 10 289 294

31. ZwickMEKileyMPStewartACMateczunAReadTD 2008 Genotyping of Bacillus cereus Strains by Microarray-Based Resequencing. PLoS ONE 3 e2513 doi:10.1371/journal.pone.0002513

32. DunmanPMMountsWMcAleeseFImmermannFMacapagalD 2004 Uses of Staphylococcus aureus GeneChips in genotyping and genetic composition analysisic composition analysis. J Clin Microbiol 42 4275 4283

33. CorlessCEKaczmarskiEBorrowRGuiverM 2008 Molecular characterization of Neisseria meningitidis isolates using a resequencing DNA microarray. J Mol Diagn 10 265 271

34. PandyaGAHolmesMHPetersenJMPradhanSKaramychevaSA 2009 Whole genome single nucleotide polymorphism based phylogeny of Francisella tularensis and its application to the development of a strain typing assay. BMC Microbiol 9 213 213

35. OctaviaSLanR 2007 Single-nucleotide-polymorphism typing and genetic relationships of Salmonella enterica serovar Typhi isolates. J Clin Microbiol 45 3795 3801

36. AchtmanM 2008 Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol 62 53 70

37. OctaviaSLanR 2009 Multiple-locus variable-number tandem-repeat analysis of Salmonella enterica serovar Typhi. J Clin Microbiol 47 2369 2376

38. PritchardJStephensMDonnellyPJ 2000 Inference of population structure using multilocus genotype data. Genetics 155 945 959

39. FalushDStephensMPritchardJ 2003 Inference of population structure using multilocus genotype data linked loci and correlated allele frequencies. Genetics 164 1567 1587

40. DidelotXFalushD 2007 Inference of Bacterial Microevolution Using Multilocus Sequence Data. Genetics 175 1251 1266

41. DidelotXBarkerMFalushDPriestF 2009 Evolution of pathogenicity in the Bacillus cereus group. Systematic and Applied Microbiology 32 81 90

42. AnjumMFMarooneyCFookesMBakerSDouganG 2005 Identification of Core and Variable Components of the Salmonella enterica Subspecies I Genome by Microarray. Infect Immun 73 7894 7905

43. MilkmanRBridgesMM 1990 Molecular Evolution of the Escherichia coli Chromosome. III. Clonal Frames. Genetics 126 505 517

44. FeilEMaidenMAchtmanMSprattB 1999 The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol Biol Evol 16 1496 1502

45. HoltKEThomsonNRWainJLangridgeGCHasanR 2009 BMC Genomics. BMC Genomics 12 1 12

46. MorelliGDidelotXKusecekBSchwarzSBahlawaneC 2010 Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families. PLoS Genet 6 e1001036 doi:10.1371/journal.pgen.1001036

47. SchierupMHHeinJ 2000 Consequences of recombination on traditional phylogenetic analysis. Genetics 156 879 891

48. FialaKLSokalRR 1985 Factors determining the accuracy of cladogram estimation evaluation using computer-simulation. Evolution 39 609622

49. WirthTMorelliGKusecekBvan BelkumAvan der ScheeC 2007 The rise and spread of a new pathogen: seroresistant Moraxella catarrhalis. Genome Res 17 1647 1656

50. den BakkerHDidelotXFortesENightingaleKWiedmannM 2008 Lineage specific recombination rates and microevolution in Listeria monocytogenes. BMC Evolutionary Biology 8 277

51. OrsiRSunQWiedmannM 2008 Genome-wide analyses reveal lineage specific contributions of positive selection and recombination to the evolution of Listeria monocytogenes. BMC Evolutionary Biology 8 233

52. DidelotXLawsonDDarlingAFalushD 2010 Inference of homologous recombination in bacteria using whole-genome sequences. Genetics 186 1435 1449

53. McCarthyNCollesFDingleKBagnallMManningG 2007 Population genetic approaches to assigning the source of human pathogens: host associated genetic import in Campylobacter jejuni. Emerging infectious diseases 13 267 272

54. LiuWQFengYWangYZouQHChenF 2009 Salmonella paratyphi C: genetic divergence from Salmonella choleraesuis and pathogenic convergence with Salmonella typhi. PLoS ONE 4 e4510 doi:10.1371/journal.pone.0004510

55. MajewskiJ 2001 Sexual isolation in bacteria. FEMS microbiology letters 199 161 169

56. FraserCHanageWSprattB 2007 Recombination and the nature of bacterial speciation. Science 315 476 480

57. ZahrtTCMaloyS 1997 Barriers to recombination between closely related bacteria: MutS and RecBCD inhibit recombination between Salmonella typhimurium and Salmonella typhi. Proc Natl Acad Sci U S A 94 9786 9791

58. TindallBJGrimontPAGarrityGMEuzébyJP 2005 Nomenclature and taxonomy of the genus Salmonella. Int J Syst Evol Microbiol 55 521 524

59. HeyndrickxMPasmansFDucatelleRDecostereAHaesebrouckF 2005 Recent changes in Salmonella nomenclature: the need for clarification. Vet J 170 275277

60. CrosaJBrennerDEwingWFalkowS 1973 Molecular relationships among the Salmonellae. J Bacteriol 115 307315

61. AchtmanMWagnerM 2008 Microbial diversity and the genetic nature of microbial species. Nature Reviews Microbiology 6 431 440

62. FraserCAlmEJPolzMFSprattBGHanageWP 2009 The bacterial species challenge: making sense of genetic and ecological diversity. Science 323 741 746

63. HanageWPSprattBGTurnerKMEFraserC 2006 Modelling bacterial speciation. Phil Trans R Soc B 361 2039 44

64. SheppardSMcCarthyNFalushDMaidenM 2008 Convergence of Campylobacter Species: Implications for Bacterial Evolution. Science 320 237 239

65. CohanFM 2001 Bacterial species and speciation. Systematic biology 50 513 24

66. CohanFMPerryEB 2007 A systematics for discovering the fundamental units of bacterial diversity. Curr Biol 17 373 386

67. Carey-SmithGVBillingtonCCorneliusAJHudsonJAHeinemannJA 2006 Isolation and characterization of bacteriophages infecting salmonella spp. FEMS Microbiol Lett 258 182 186

68. ThompsonJ 1999 Specific hypotheses on the geographic mosaic of coevolution. American Naturalist 1 14

69. ThompsonJ 2005 The geographic mosaic of coevolution. University of Chicago Press

70. BucklingARaineyPB 2002 The role of parasites in sympatric and allopatric host diversification. Nature 420 496 499

71. GomulkiewiczRDrownDMDybdahlMFGodsoeWNuismerSL 2007 Dos and don'ts of testing the geographic mosaic theory of coevolution. Heredity 98 249 258

72. FalushDWirthTLinzBPritchardJKStephensM 2003 Traces of human migrations in Helicobacter pylori populations. Science 299 1582 1585

73. MorelliGSongYMazzoniCJEppingerMRoumagnacP 2010 Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet 42 1140 1143

74. BeltranPPlockSASmithNHWhittamTSOldDC 1991 Reference collection of strains of the Salmonella typhimurium complex from natural populations. J Gen Microbiol 137 601 606

75. BoydEFWangFSBeltranPPlockSANelsonK 1993 Salmonella reference collection B (SARB): strains of 37 serovars of subspecies I. J Gen Microbiol 139 1125 1132

76. DarlingACMauBBlattnerFRPernaNT 2004 Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14 1394 1403

77. DarlingAMauBPernaN 2010 progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. PLoS ONE 5 e11147 doi:10.1371/journal.pone.0011147

78. ThomsonNRClaytonDJWindhorstDVernikosGDavidsonS 2008 Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res 18 1624 1637

79. PritchardJKWenaXFalushD 2009 Documentation for structure software: Version 2.3, http://pritch.bsd.uchicago.edu/structure.html.

80. EvannoGRegnautSGoudetJ 2005 Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14 2611 2620

81. GelmanARubinDB 1992 Inference from iterative simulation using multiple sequences. Statistical Science 7 457 511

82. CarverTThomsonNBleasbyABerrimanMParkhillJ 2009 DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25 119 120

83. RambautA 2008 FigTree, a graphical viewer of phylogenetic trees, Available from http://tree.bio.ed.ac.uk/software/figtree/

84. GansnerERNorthSC 2000 An open graph visualization system and its applications to software engineering. Software — Practice and Experience 30 1203 1233

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#