#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Phylogenetically-Related Pattern Recognition Receptors EFR and XA21 Recruit Similar Immune Signaling Components in Monocots and Dicots


Pests and diseases cause significant agricultural losses. Plants recognize pathogen-derived molecules via plasma membrane-localized immune receptors (called pattern recognition receptors or PRRs), resulting in pathogen resistance. In recent years, the transfer of PRRs across plant species has emerged as a promising biotechnological approach to improve crop disease resistance. Successful transfers of PRRs suggest that immune signaling components are conserved across plant species. In this study, we demonstrate that the PRR XA21 from the monocot plant rice is functional in the dicot plant Arabidopsis thaliana (Arabidopsis) and that it confers quantitatively enhanced resistance to bacteria. Furthermore, we show that the rice XA21 and the Arabidopsis EFR, which are evolutionary-distant but phylogenetically closely related, recruit similar signaling components for their function, revealing an overall conservation of immune pathways across monocots and dicots. These findings demonstrate evolutionary conservation of downstream signaling from PRRs and indicate that transfer of PRRs is possible between different plant families, but also between monocots and dicots.


Vyšlo v časopise: The Phylogenetically-Related Pattern Recognition Receptors EFR and XA21 Recruit Similar Immune Signaling Components in Monocots and Dicots. PLoS Pathog 11(1): e32767. doi:10.1371/journal.ppat.1004602
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004602

Souhrn

Pests and diseases cause significant agricultural losses. Plants recognize pathogen-derived molecules via plasma membrane-localized immune receptors (called pattern recognition receptors or PRRs), resulting in pathogen resistance. In recent years, the transfer of PRRs across plant species has emerged as a promising biotechnological approach to improve crop disease resistance. Successful transfers of PRRs suggest that immune signaling components are conserved across plant species. In this study, we demonstrate that the PRR XA21 from the monocot plant rice is functional in the dicot plant Arabidopsis thaliana (Arabidopsis) and that it confers quantitatively enhanced resistance to bacteria. Furthermore, we show that the rice XA21 and the Arabidopsis EFR, which are evolutionary-distant but phylogenetically closely related, recruit similar signaling components for their function, revealing an overall conservation of immune pathways across monocots and dicots. These findings demonstrate evolutionary conservation of downstream signaling from PRRs and indicate that transfer of PRRs is possible between different plant families, but also between monocots and dicots.


Zdroje

1. Lehti-Shiu MD, Shiu SH (2012) Diversity, classification and function of the plant protein kinase superfamily. Philos Trans R Soc Lond B Biol Sci 367: 2619–2639. 22889912

2. Gao LL, Xue HW (2012) Global Analysis of Expression Profiles of Rice Receptor-Like Kinase Genes. Molecular Plant 5: 143–153. doi: 10.1093/mp/ssr062 21765177

3. Hwang SG, Kim DS, Jang CS (2011) Comparative analysis of evolutionary dynamics of genes encoding leucine-rich repeat receptor-like kinase between rice and Arabidopsis. Genetica 139: 1023–1032. doi: 10.1007/s10709-011-9604-y 21879323

4. Tang P, Zhang Y, Sun XQ, Tian DC, Yang SH, et al. (2010) Disease resistance signature of the leucine-rich repeat receptor-like kinase genes in four plant species. Plant Science 179: 399–406.

5. Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, et al. (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16: 1220–1234. 15105442

6. Lehti-Shiu MD, Zou C, Hanada K, Shiu SH (2009) Evolutionary History and Stress Regulation of Plant Receptor-Like Kinase/Pelle Genes. Plant Physiology 150: 12–26. 19321712

7. Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiology 132: 530–543. 12805585

8. Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proceedings of the National Academy of Sciences of the United States of America 98: 10763–10768. 11526204

9. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, et al. (1995) A Receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene, Xa21. Science 270: 1804–1806. 8525370

10. Bahar O, Pruitt R, Luu DD, Schwessinger B, Daudi A, et al. (2014) The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles. PeerJ 2: e242. doi: 10.7717/peerj.242 24482761

11. Zan YJ, Ji Y, Zhang Y, Yang SH, Song YJ, et al. (2013) Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes. Bmc Genomics 14. doi: 10.1186/1471-2164-14-318 23663326

12. Sakamoto T, Deguchi M, Brustolini OJB, Santos AA, Silva FF, et al. (2012) The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. Bmc Plant Biology 12. doi: 10.1186/1471-2229-12-229 23198823

13. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, et al. (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125: 749–760. 16713565

14. Gomez-Gomez L, Boller T (2000) FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell 5: 1003–1011.

15. Dardick C, Schwessinger B, Ronald P (2012) Non-arginine-aspartate (non-RD) kinases are associated with innate immune receptors that recognize conserved microbial signatures. Current Opinion in Plant Biology 15: 358–366. doi: 10.1016/j.pbi.2012.05.002 22658367

16. Dardick C, Ronald P (2006) Plant and animal pathogen recognition receptors signal through non-RD kinases. Plos Pathogens 2: 14–28. 16424920

17. Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the Plant Immune System from Dissection to Deployment. Science 341: 746–751. doi: 10.1126/science.1236011 23950531

18. Wulff BBH, Horvath DM, Ward ER (2011) Improving immunity in crops: new tactics in an old game. Current Opinion in Plant Biology 14: 468–476. doi: 10.1016/j.pbi.2011.04.002 21531167

19. Boyd LA, Ridout C, O’Sullivan DM, Leach JE, Leung H (2013) Plant-pathogen interactions: disease resistance in modern agriculture. Trends in Genetics 29: 233–240. 23153595

20. T KGBEO (1990) A new gene for resistance to bacterial blight from O. longistaminata. Rice Genet Newsl 7: 121–122.

21. Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, et al. (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology 28: 365–U394. doi: 10.1038/nbt.1613 20231819

22. Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GCM, Joosten MHAJ, et al. (2011) Interfamily Transfer of Tomato Ve1 Mediates Verticillium Resistance in Arabidopsis. Plant Physiology 156: 2255–2265. doi: 10.1104/pp.111.180067 21617027

23. Tripathi JN, Lorenzen J, Bahar O, Ronald P, Tripathi L (2014) Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum. Plant Biotechnol J.

24. Afroz A, Chaudhry Z, Rashid U, Ali GM, Nazir F, et al. (2011) Enhanced resistance against bacterial wilt in transgenic tomato (Lycopersicon esculentum) lines expressing the Xa21 gene. Plant Cell Tissue and Organ Culture 104: 227–237.

25. Mendes BMJ, Cardoso SC, Boscariol-Camargo RL, Cruz RB, Mourao FAA, et al. (2010) Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene. Plant Pathology 59: 68–75.

26. Kawano Y, Shimamoto K (2013) Early signaling network in rice PRR-mediated and R-mediated immunity. Current Opinion in Plant Biology 16: 496–504. doi: 10.1016/j.pbi.2013.07.004 23927868

27. Macho AP, Schwessinger B, Ntoukakis V, Brutus A, Segonzac C, et al. (2014) A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation. Science 343: 1509–1512. doi: 10.1126/science.1248849 24625928

28. Tintor N, Saijo Y (2014) ER-mediated control for abundance, quality, and signaling of transmembrane immune receptors in plants. Frontiers in Plant Science 5. doi: 10.3389/fpls.2014.00065 24616730

29. Park CJ, Sharma R, Lefebvre B, Canlas PE, Ronald PC (2013) The endoplasmic reticulum-quality control component SDF2 is essential for XA21-mediated immunity in rice. Plant Science 210: 53–60. doi: 10.1016/j.plantsci.2013.05.003 23849113

30. Farid A, Malinovsky FG, Veit C, Schoberer J, Zipfel C, et al. (2013) Specialized Roles of the Conserved Subunit OST3/6 of the Oligosaccharyltransferase Complex in Innate Immunity and Tolerance to Abiotic Stresses. Plant Physiology 162: 24–38. doi: 10.1104/pp.113.215509 23493405

31. Park CJ, Bart R, Chern M, Canlas PE, Bai W, et al. (2010) Overexpression of the Endoplasmic Reticulum Chaperone BiP3 Regulates XA21-Mediated Innate Immunity in Rice. Plos One 5. doi: 10.1371/journal.pone.0009262 20174657

32. Haweker H, Rips S, Koiwa H, Salomon S, Saijo Y, et al. (2010) Pattern Recognition Receptors Require N-Glycosylation to Mediate Plant Immunity. Journal of Biological Chemistry 285: 4629–4636. doi: 10.1074/jbc.M109.063073 20007973

33. Nekrasov V, Li J, Batoux M, Roux M, Chu ZH, et al. (2009) Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. Embo Journal 28: 3428–3438. doi: 10.1038/emboj.2009.262 19763086

34. Lu X, Tintor N, Mentzel T, Kombrink E, Boller T, et al. (2009) Uncoupling of sustained MAMP receptor signaling from early outputs in an Arabidopsis endoplasmic reticulum glucosidase II allele. Proceedings of the National Academy of Sciences of the United States of America 106: 22522–22527. doi: 10.1073/pnas.0907711106 20007779

35. Li J, Zhao-Hui C, Batoux M, Nekrasov V, Roux M, et al. (2009) Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc Natl Acad Sci U S A 106: 15973–15978. doi: 10.1073/pnas.0905532106 19717464

36. Boller T, Felix G (2009) A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology 60: 379–406. doi: 10.1146/annurev.arplant.57.032905.105346 19400727

37. Wan JR, Zhang XC, Neece D, Ramonell KM, Clough S, et al. (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20: 471–481. 18263776

38. Sun Y, Li L, Macho AP, Han Z, Hu Z, et al. (2013) Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342: 624–628. doi: 10.1126/science.1243825 24114786

39. Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, et al. (2011) The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23: 2440–2455. doi: 10.1105/tpc.111.084301 21693696

40. Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, et al. (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the National Academy of Sciences of the United States of America 104: 12217–12222. 17626179

41. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, et al. (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497–U412. 17625569

42. Lin W, Li B, Lu D, Chen S, Zhu N, et al. (2014) Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity. Proc Natl Acad Sci U S A 111: 3632–3637. doi: 10.1073/pnas.1318817111 24532660

43. Zhang J, Li W, Xiang T, Liu Z, Laluk K, et al. (2010) Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7: 290–301. doi: 10.1016/j.chom.2010.03.007 20413097

44. Lu DP, Wu SJ, Gao XQ, Zhang YL, Shan LB, et al. (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America 107: 496–501. 20018686

45. Li L, Li M, Yu L, Zhou Z, Liang X, et al. (2014) The FLS2-Associated Kinase BIK1 Directly Phosphorylates the NADPH Oxidase RbohD to Control Plant Immunity. Cell Host Microbe 15: 329–338. doi: 10.1016/j.chom.2014.02.009 24629339

46. Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, et al. (2014) Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Mol Cell 54: 43–55. doi: 10.1016/j.molcel.2014.02.021 24630626

47. Halter T, Imkampe J, Mazzotta S, Wierzba M, Postel S, et al. (2014) The leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity. Curr Biol 24: 134–143. 24388849

48. Lu DP, Lin WW, Gao XQ, Wu SJ, Cheng C, et al. (2011) Direct Ubiquitination of Pattern Recognition Receptor FLS2 Attenuates Plant Innate Immunity. Science 332: 1439–1442. doi: 10.1126/science.1204903 21680842

49. Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes & Development 20: 537–542. 16510871

50. Chen X, Chern M, Canlas PE, Ruan D, Jiang C, et al. (2010) An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc Natl Acad Sci U S A 107: 8029–8034. doi: 10.1073/pnas.0912311107 20385831

51. Park CJ, Peng Y, Chen X, Dardick C, Ruan D, et al. (2008) Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biol 6: e231. doi: 10.1371/journal.pbio.0060231 18817453

52. Jiang YN, Chen XH, Ding XD, Wang YS, Chen Q, et al. (2013) The XA21 binding protein XB25 is required for maintaining XA21-mediated disease resistance. Plant Journal 73: 814–823. doi: 10.1111/tpj.12076 23206229

53. Wang YS, Pi LY, Chen X, Chakrabarty PK, Jiang J, et al. (2006) Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18: 3635–3646. 17172358

54. Chen X, Zuo S, Schwessinger B, Chern M, Canlas PE, et al. (2014) An XA21-Associated Kinase (OsSERK2) Regulates Immunity Mediated by the XA21 and XA3 Immune Receptors. Mol Plant.

55. Albert M, Jehle AK, Mueller K, Eisele C, Lipschis M, et al. (2010) Arabidopsis thaliana pattern recognition receptors for bacterial elongation factor Tu and flagellin can be combined to form functional chimeric receptors. J Biol Chem 285: 19035–19042. doi: 10.1074/jbc.M110.124800 20410299

56. Schwessinger B, Roux M, Kadota Y, Ntoukakis V, Sklenar J, et al. (2011) Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet 7: e1002046. doi: 10.1371/journal.pgen.1002046 21593986

57. Zeng WQ, He SY (2010) A Prominent Role of the Flagellin Receptor FLAGELLIN-SENSING2 in Mediating Stomatal Response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiology 153: 1188–1198. doi: 10.1104/pp.110.157016 20457804

58. Xin XF, He SY (2013) Pseudomonas syringae pv. tomato DC3000: A Model Pathogen for Probing Disease Susceptibility and Hormone Signaling in Plants. Annual Review of Phytopathology, Vol 51 51: 473–498. doi: 10.1146/annurev-phyto-082712-102321 23725467

59. da Silva FG, Shen Y, Dardick C, Burdman S, Yadav RC, et al. (2004) Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. Mol Plant Microbe Interact 17: 593–601. 15195942

60. Burdman S, Shen Y, Lee SW, Xue Q, Ronald P (2004) RaxH/RaxR: a two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity. Mol Plant Microbe Interact 17: 602–612. 15195943

61. Shen Y, Sharma P, da Silva FG, Ronald P (2002) The Xanthomonas oryzae pv. lozengeoryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine-5′-phosphosulphate kinase that are required for AvrXa21 avirulence activity. Mol Microbiol 44: 37–48. 11967067

62. Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, et al. (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 100: 10181–10186. 12928499

63. Schulze B, Mentzel T, Jehle AK, Mueller K, Beeler S, et al. (2010) Rapid Heteromerization and Phosphorylation of Ligand-activated Plant Transmembrane Receptors and Their Associated Kinase BAK1. Journal of Biological Chemistry 285: 9444–9451. doi: 10.1074/jbc.M109.096842 20103591

64. Sun YD, Han ZF, Tang J, Hu ZH, Chai CL, et al. (2013) Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide. Cell Research 23: 1326–1329. doi: 10.1038/cr.2013.131 24126715

65. Santiago J, Henzler C, Hothorn M (2013) Molecular Mechanism for Plant Steroid Receptor Activation by Somatic Embryogenesis Co-Receptor Kinases. Science 341: 889–892. doi: 10.1126/science.1242468 23929946

66. Liu ZX, Wu Y, Yang F, Zhang YY, Chen S, et al. (2013) BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proceedings of the National Academy of Sciences of the United States of America 110: 6205–6210. doi: 10.1073/pnas.1215543110 23431184

67. Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N, et al. (2013) A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe 13: 347–357. doi: 10.1016/j.chom.2013.02.007 23498959

68. Song SK, Clark SE (2005) POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis. Dev Biol 285: 272–284. 16112663

69. Gagne JM, Clark SE (2010) The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated. Plant Cell 22: 729–743. doi: 10.1105/tpc.109.068734 20348433

70. Gagne JM, Clark SE (2007) The Protein Phosphatases POL and PLL1 are Signaling Intermediates for Multiple Pathways in Arabidopsis. Plant Signal Behav 2: 245–246. 19704666

71. Bouwmeester K, Han M, Blanco-Portales R, Song W, Weide R, et al. (2014) The Arabidopsis lectin receptor kinase LecRK-I.9 enhances resistance to Phytophthora infestans in Solanaceous plants. Plant Biotechnology Journal 12: 10–16. doi: 10.1111/pbi.12111 23980842

72. Chaw SM, Chang CC, Chen HL, Li WH (2004) Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. Journal of Molecular Evolution 58: 424–441. 15114421

73. Park CJ, Ronald PC (2012) Cleavage and nuclear localization of the rice XA21 immune receptor. Nature Communications 3. doi: 10.1038/ncomms1932 22735448

74. Malinovsky FG, Batoux M, Schwessinger B, Youn JH, Stransfeld L, et al. (2014) Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor homolog of brassinosteroid enhanced expression2 interacting with increased leaf inclination1 binding bHLH1. Plant Physiol 164: 1443–1455. doi: 10.1104/pp.113.234625 24443525

75. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797. 15034147

76. J. F (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5: 164–166.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#