#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Variation in RNA Virus Mutation Rates across Host Cells


It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10−6 to 10−4 substitutions per nucleotide per round of copying (s/n/r) and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV), which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10−5 s/n/r). Cell immortalization through p53 inactivation and oxygen levels (1–21%) did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature.


Vyšlo v časopise: Variation in RNA Virus Mutation Rates across Host Cells. PLoS Pathog 10(1): e32767. doi:10.1371/journal.ppat.1003855
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003855

Souhrn

It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10−6 to 10−4 substitutions per nucleotide per round of copying (s/n/r) and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV), which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10−5 s/n/r). Cell immortalization through p53 inactivation and oxygen levels (1–21%) did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature.


Zdroje

1. DuffyS, ShackeltonLA, HolmesEC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9: 267–276.

2. SanjuánR, NebotMR, ChiricoN, ManskyLM, BelshawR (2010) Viral mutation rates. J Virol 84: 9733–9748.

3. PfeifferJK, KirkegaardK (2005) Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS Pathog 1: e11.

4. VignuzziM, StoneJK, ArnoldJJ, CameronCE, AndinoR (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439: 344–348.

5. VignuzziM, WendtE, AndinoR (2008) Engineering attenuated virus vaccines by controlling replication fidelity. Nat Med 14: 154–161.

6. WeeksSA, LeeCA, ZhaoY, SmidanskyED, AugustA, et al. (2012) A Polymerase mechanism-based strategy for viral attenuation and vaccine development. J Biol Chem 287: 31618–31622.

7. AndersonJP, DaifukuR, LoebLA (2004) Viral error catastrophe by mutagenic nucleosides. Annu Rev Microbiol 58: 183–205.

8. Domingo E (2006) Quasispecies: concept and implications for virology. Springer.

9. HolmesEC (2008) Evolutionary history and phylogeography of human viruses. Annu Rev Microbiol 62: 307–328.

10. WoolhouseM, GauntE (2007) Ecological origins of novel human pathogens. Crit Rev Microbiol 33: 231–242.

11. PepinKM, LassS, PulliamJR, ReadAF, Lloyd-SmithJO (2010) Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol 8: 802–813.

12. StreickerDG, AltizerSM, Velasco-VillaA, RupprechtCE (2012) Variable evolutionary routes to host establishment across repeated rabies virus host shifts among bats. Proc Natl Acad Sci USA 109: 19715–19720.

13. Menéndez-AriasL (2009) Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses 1: 1137–1165.

14. PfeifferJK, KirkegaardK (2003) A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci USA 100: 7289–7294.

15. ArnoldJJ, VignuzziM, StoneJK, AndinoR, CameronCE (2005) Remote site control of an active site fidelity checkpoint in a viral RNA-dependent RNA polymerase. J Biol Chem 280: 25706–25716.

16. KorneevaVS, CameronCE (2007) Structure-function relationships of the viral RNA-dependent RNA polymerase: fidelity, replication speed, and initiation mechanism determined by a residue in the ribose-binding pocket. J Biol Chem 282: 16135–16145.

17. RobertsJD, BebenekK, KunkelTA (1988) The accuracy of reverse transcriptase from HIV-1. Science 242: 1171–1173.

18. SteinhauerDA, DomingoE, HollandJJ (1992) Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene 122: 281–288.

19. DenisonMR, GrahamRL, DonaldsonEF, EckerleLD, BaricRS (2011) Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol 8: 270–279.

20. ChaoL, RangCU, WongLE (2002) Distribution of spontaneous mutants and inferences about the replication mode of the RNA bacteriophage φ6. J Virol 76: 3276–3281.

21. SardanyesJ, SoleRV, ElenaSF (2009) Replication mode and landscape topology differentially affect RNA virus mutational load and robustness. J Virol 83: 12579–12589.

22. PitaJS, de MirandaJR, SchneiderWL, RoossinckMJ (2007) Environment determines fidelity for an RNA virus replicase. J Virol 81: 9072–9077.

23. PitaJS, RoossinckMJ (2013) Mapping viral functional domains for genetic diversity in plants. J Virol 87: 790–797.

24. DiamondTL, RoshalM, JamburuthugodaVK, ReynoldsHM, MerriamAR, et al. (2004) Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J Biol Chem 279: 51545–51553.

25. BebenekK, RobertsJD, KunkelTA (1992) The effects of dNTP pool imbalances on frameshift fidelity during DNA replication. J Biol Chem 267: 3589–3596.

26. JuliasJG, PathakVK (1998) Deoxyribonucleoside triphosphate pool imbalances in vivo are associated with an increased retroviral mutation rate. J Virol 72: 7941–7949.

27. HoltzCM, ManskyLM (2013) Variation of HIV-1 mutation spectra among cell types. J Virol 87: 5296–5299.

28. HarrisRS, BishopKN, SheehyAM, CraigHM, Petersen-MahrtSK, et al. (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113: 803–809.

29. LecossierD, BouchonnetF, ClavelF, HanceAJ (2003) Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300: 1112.

30. MangeatB, TurelliP, CaronG, FriedliM, PerrinL, et al. (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424: 99–103.

31. O'HaraPJ, NicholST, HorodyskiFM, HollandJJ (1984) Vesicular stomatitis virus defective interfering particles can contain extensive genomic sequence rearrangements and base substitutions. Cell 36: 915–924.

32. CattaneoR, SchmidA, EschleD, BaczkoK, TerMV, et al. (1988) Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55: 255–265.

33. HajjarAM, LinialML (1995) Modification of retroviral RNA by double-stranded RNA adenosine deaminase. J Virol 69: 5878–5882.

34. KimT, MudryRAJr, RexrodeCA, PathakVK (1996) Retroviral mutation rates and A-to-G hypermutations during different stages of retroviral replication. J Virol 70: 7594–7602.

35. SharmeenL, BassB, SonenbergN, WeintraubH, GroudineM (1991) Tat-dependent adenosine-to-inosine modification of wild-type transactivation response RNA. Proc Natl Acad Sci USA 88: 8096–8100.

36. SeronelloS, MontanezJ, PresleighK, BarlowM, ParkSB, et al. (2011) Ethanol and reactive species increase basal sequence heterogeneity of hepatitis C virus and produce variants with reduced susceptibility to antivirals. PLoS ONE 6: e27436.

37. Whelan SPJ (2008) Vesicular stomatitis virus. In: Mahy BWJ, van Regenmortel MHV, editors. Encyclopedia of Virology. Elsevier. pp. 291–299.

38. LetchworthGJ, RodriguezLL, Del cbarreraJ (1999) Vesicular stomatitis. Vet J 157: 239–260.

39. KuzminIV, NovellaIS, DietzgenRG, PadhiA, RupprechtCE (2009) The rhabdoviruses: biodiversity, phylogenetics, and evolution. Infect Genet Evol 9: 541–553.

40. ComerJA, TeshRB, ModiGB, CornJL, NettlesVF (1990) Vesicular stomatitis virus, New Jersey serotype: replication in and transmission by Lutzomyia shannoni (Diptera: Psychodidae). Am J Trop Med Hyg 42: 483–490.

41. MeadDG, GrayEW, NobletR, MurphyMD, HowerthEW, et al. (2004) Biological transmission of vesicular stomatitis virus (New Jersey serotype) by Simulium vittatum (Diptera: Simuliidae) to domestic swine (Sus scrofa). J Med Entomol 41: 78–82.

42. TeshRB, ChaniotisBN, JohnsonKM (1972) Vesicular stomatitis virus (Indiana serotype): transovarial transmission by phlebotomine sandlies. Science 175: 1477–1479.

43. CarreauA, El Hafny-RahbiB, MatejukA, GrillonC, KiedaC (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15: 1239–1253.

44. ZhengQ (1999) Progress of a half century in the study of the Luria-Delbruck distribution. Math Biosci 162: 1–32.

45. SedivyJM, CaponeJP, RajBhandaryUL, SharpPA (1987) An inducible mammalian amber suppressor: propagation of a poliovirus mutant. Cell 50: 379–389.

46. FurióV, MoyaA, SanjuánR (2005) The cost of replication fidelity in an RNA virus. Proc Natl Acad Sci USA 102: 10233–10237.

47. SuárezP, ValcárcelJ, OrtínJ (1992) Heterogeneity of the mutation rates of influenza A viruses: isolation of mutator mutants. J Virol 66: 2491–2494.

48. SchragSJ, RotaPA, BelliniWJ (1999) Spontaneous mutation rate of measles virus: direct estimation based on mutations conferring monoclonal antibody resistance. J Virol 73: 51–54.

49. de la IglesiaF, MartinezF, HillungJ, CuevasJM, GerrishPJ, et al. (2012) Luria-Delbruck Estimation of Turnip mosaic virus Mutation Rate in vivo. J Virol 86: 3386–3388.

50. Garcia-VilladaL, DrakeJW (2012) The three faces of riboviral spontaneous mutation: spectrum, mode of genome replication, and mutation rate. PLoS Genet 8: e1002832.

51. HollandJJ, de la TorreJC, ClarkeDK, DuarteE (1991) Quantitation of relative fitness and great adaptability of clonal populations of RNA viruses. J Virol 65: 2960–2967.

52. HollandJJ, de la TorreJC, SteinhauerDA, ClarkeDK, DuarteEA, et al. (1989) Virus mutation frequencies can be greatly understimated by monoclonal antibody neutralization of virions. J Virol 63: 5030–5036.

53. CorbettTH, GriswoldDPJr, RobertsBJ, PeckhamJC, SchabelFMJr (1975) Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure. Cancer Res 35: 2434–2439.

54. BrayG, BrentTP (1972) Deoxyribonucleoside 5′-triphosphate pool fluctuations during the mammalian cell cycle. Biochim Biophys Acta 269: 184–191.

55. RussellSJ, PengKW, BellJC (2012) Oncolytic virotherapy. Nat Biotechnol 30: 658–670.

56. BreitbachCJ, De SilvaNS, FallsTJ, AladlU, EvginL, et al. (2011) Targeting tumor vasculature with an oncolytic virus. Mol Ther 19: 886–894.

57. KlebeRJ, RuddleFH (1969) Neuroblastoma: cell culture analysis of a differentiating stem cell system. J Cell Biol 43: 69A.

58. GeP, TsaoJ, ScheinS, GreenTJ, LuoM, et al. (2010) Cryo-EM model of the bullet-shaped vesicular stomatitis virus. Science 327: 689–693.

59. GreenTJ, ZhangX, WertzGW, LuoM (2006) Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science 313: 357–360.

60. OstertagD, Hoblitzell-OstertagTM, PerraultJ (2007) Overproduction of double-stranded RNA in vesicular stomatitis virus-infected cells activates a constitutive cell-type-specific antiviral response. J Virol 81: 503–513.

61. NovellaIS, HersheyCL, EscarmisC, DomingoE, HollandJJ (1999) Lack of evolutionary stasis during alternating replication of an arbovirus in insect and mammalian cells. J Mol Biol 287: 459–465.

62. RodríguezLL, FitchWM, NicholST (1996) Ecological factors rather than temporal factors dominate the evolution of vesicular stomatitis virus. Proc Natl Acad Sci USA 93: 13030–13035.

63. HanadaK, SuzukiY, GojoboriT (2004) A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol Biol Evol 21: 1074–1080.

64. JenkinsGM, RambautA, PybusOG, HolmesEC (2002) Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54: 156–165.

65. SanjuánR, MoyaA, ElenaSF (2004) The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc Natl Acad Sci USA 101: 8396–8401.

66. WhelanSP, BallLA, BarrJN, WertzGT (1995) Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc Natl Acad Sci USA 92: 8388–8392.

67. LinRJ, LiaoCL, LinE, LinYL (2004) Blocking of the alpha interferon-induced Jak-Stat signaling pathway by Japanese encephalitis virus infection. J Virol 78: 9285–9294.

68. SanjuánR (2010) Mutational fitness effects in RNA and ssDNA viruses: common patterns revealed by site-directed mutagenesis studies. Phil Trans R Soc Lond 365: 1975–1982.

69. SanjuánR (2012) From molecular genetics to phylodynamics: evolutionary relevance of mutation rates across viruses. PLoS Pathog 8: e1002685.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#