#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Regulators of Cell Cycle Progression and Differentiation Identified Using a Kinome-Wide RNAi Screen


The African trypanosome, Trypanosoma brucei, maintains an integral link between cell cycle regulation and differentiation during its intricate life cycle. Whilst extensive changes in phosphorylation have been documented between the mammalian bloodstream form and the insect procyclic form, relatively little is known about the parasite's protein kinases (PKs) involved in the control of cellular proliferation and differentiation. To address this, a T. brucei kinome-wide RNAi cell line library was generated, allowing independent inducible knockdown of each of the parasite's 190 predicted protein kinases. Screening of this library using a cell viability assay identified ≥42 PKs that are required for normal bloodstream form proliferation in culture. A secondary screen identified 24 PKs whose RNAi-mediated depletion resulted in a variety of cell cycle defects including in G1/S, kinetoplast replication/segregation, mitosis and cytokinesis, 15 of which are novel cell cycle regulators. A further screen identified for the first time two PKs, named repressor of differentiation kinase (RDK1 and RDK2), depletion of which promoted bloodstream to procyclic form differentiation. RDK1 is a membrane-associated STE11-like PK, whilst RDK2 is a NEK PK that is essential for parasite proliferation. RDK1 acts in conjunction with the PTP1/PIP39 phosphatase cascade to block uncontrolled bloodstream to procyclic form differentiation, whilst RDK2 is a PK whose depletion efficiently induces differentiation in the absence of known triggers. Thus, the RNAi kinome library provides a valuable asset for functional analysis of cell signalling pathways in African trypanosomes as well as drug target identification and validation.


Vyšlo v časopise: Regulators of Cell Cycle Progression and Differentiation Identified Using a Kinome-Wide RNAi Screen. PLoS Pathog 10(1): e32767. doi:10.1371/journal.ppat.1003886
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003886

Souhrn

The African trypanosome, Trypanosoma brucei, maintains an integral link between cell cycle regulation and differentiation during its intricate life cycle. Whilst extensive changes in phosphorylation have been documented between the mammalian bloodstream form and the insect procyclic form, relatively little is known about the parasite's protein kinases (PKs) involved in the control of cellular proliferation and differentiation. To address this, a T. brucei kinome-wide RNAi cell line library was generated, allowing independent inducible knockdown of each of the parasite's 190 predicted protein kinases. Screening of this library using a cell viability assay identified ≥42 PKs that are required for normal bloodstream form proliferation in culture. A secondary screen identified 24 PKs whose RNAi-mediated depletion resulted in a variety of cell cycle defects including in G1/S, kinetoplast replication/segregation, mitosis and cytokinesis, 15 of which are novel cell cycle regulators. A further screen identified for the first time two PKs, named repressor of differentiation kinase (RDK1 and RDK2), depletion of which promoted bloodstream to procyclic form differentiation. RDK1 is a membrane-associated STE11-like PK, whilst RDK2 is a NEK PK that is essential for parasite proliferation. RDK1 acts in conjunction with the PTP1/PIP39 phosphatase cascade to block uncontrolled bloodstream to procyclic form differentiation, whilst RDK2 is a PK whose depletion efficiently induces differentiation in the absence of known triggers. Thus, the RNAi kinome library provides a valuable asset for functional analysis of cell signalling pathways in African trypanosomes as well as drug target identification and validation.


Zdroje

1. VassellaE, ReunerB, YutzyB, BoshartM (1997) Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J Cell Sci 110: 2661–2671.

2. DeanS, MarchettiR, KirkK, MatthewsKR (2009) A surface transporter family conveys the trypanosome differentiation signal. Nature 459: 213–217.

3. MacGregorP, SzoorB, SavillNJ, MatthewsKR (2012) Trypanosomal immune evasion, chronicity and transmission: an elegant balancing act. Nat Rev Microbiol 10: 431–438.

4. VassellaE, KrämerR, TurnerCMR, WankellM, ModesC, Van den BogaardM, BoshartM (2001) Deletion of a novel protein kinase with PX and FYVE-related domains increases the rate of differentiation of Trypanosoma brucei. Mol Microbiol 41: 33–46.

5. DomenicaliPD, BurkardG, MorandS, RenggliCK, RoditiI, VassellaE (2006) A Mitogen-activated protein kinase controls differentiation of bloodstream forms of Trypanosoma brucei. Eukaryot Cell 5: 1126–1135.

6. BarquillaA, SaldiviaM, DiazR, BartJM, VidalI, CalvoE, HallMN, NavarroM (2012) Third target of rapamycin complex negatively regulates development of quiescence in Trypanosoma brucei. Proc Natl Acad Sci U S A 109: 14399–14404.

7. SzoorB, WilsonJ, McElhinneyH, TaberneroL, MatthewsKR (2006) Protein tyrosine phosphatase TbPTP1: a molecular switch controlling life cycle differentiation in trypanosomes. J Cell Biol 175: 293–303.

8. SzoorB, RubertoI, BurchmoreR, MatthewsKR (2010) A novel phosphatase cascade regulates differentiation in Trypanosoma brucei via a glycosomal signaling pathway. Genes Dev 24: 1306–1316.

9. MorandS, RenggliCK, RoditiI, VassellaE (2012) MAP kinase kinase 1 (MKK1) is essential for transmission of Trypanosoma brucei by Glossina morsitans. Mol Biochem Parasitol 186: 73–76.

10. HammartonTC (2007) Cell cycle regulation in Trypanosoma brucei. Mol Biochem Parasitol 153: 1–8.

11. TuX, WangCC (2004) The involvement of two cdc2-related kinases (CRKs) in Trypanosoma brucei cell-cycle regulation and the distinctive stage-specific phenotypes caused by CRK3 depletion. J Biol Chem 279: 20519–20528.

12. LiZ, WangCC (2006) Changing roles of aurora-B kinase in two life cycle stages of Trypanosoma brucei. Eukaryot Cell 5: 1026–1035.

13. JettonN, RothbergKG, HubbardJG, WiseJ, LiY, BallHL, RubenL (2009) The cell cycle as a therapeutic target against Trypanosoma brucei: Hesperadin inhibits Aurora kinase-1 and blocks mitotic progression in bloodstream forms. Mol Microbiol 72: 442–458.

14. LiZ, GourguechonS, WangCC (2007) Tousled-like kinase in a microbial eukaryote regulates spindle assembly and S-phase progression by interacting with Aurora kinase and chromatin assembly factors. J Cell Sci 120: 3883–3894.

15. HammartonTC, KramerS, TetleyL, BoshartM, MottramJC (2007) Trypanosoma brucei Polo-like kinase is essential for basal body duplication, kDNA segregation and cytokinesis. Mol Microbiol 65: 1229–1248.

16. MaJ, BenzC, GrimaldiR, StockdaleC, WyattP, FrearsonJ, HammartonTC (2010) Nuclear DBF-2-related kinases are essential regulators of cytokinesis in bloodstream stage Trypanosoma brucei. J Biol Chem 285: 15356–15368.

17. ParsonsM, WortheyEA, WardPN, MottramJC (2005) Comparative analysis of the kinomes of three pathogenic trypanosomatids; Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 6: 127.

18. UrbaniakMD, MathiesonT, BantscheffM, EberhardD, GrimaldiR, Miranda-SaavedraD, WyattP, FergusonMA, FrearsonJ, DrewesG (2012) Chemical proteomic analysis reveals the drugability of the kinome of Trypanosoma brucei. ACS Chem Biol 7: 1858–1865.

19. NettIR, MartinDM, Miranda-SaavedraD, LamontD, BarberJD, MehlertA, FergusonMA (2009) The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness. Mol Cell Proteomics 8: 1527–1538.

20. BarquillaA, CrespoJL, NavarroM (2008) Rapamycin inhibits trypanosome cell growth by preventing TOR complex 2 formation. Proc Natl Acad Sci U S A 105: 14579–14584.

21. MackeyZB, KoupparisK, NishinoM, McKerrowJH (2011) High-throughput analysis of an RNAi library identifies novel kinase targets in Trypanosoma brucei. Chem Biol Drug Des 78: 454–463.

22. NishinoM, ChoyJW, GushwaNN, Oses-PrietoJA, KoupparisK, BurlingameAL, RensloAR, McKerrowJH, TauntonJ (2013) Hypothemycin, a fungal natural product, identifies therapeutic targets in Trypanosoma brucei. Elife 2: e00712.

23. MerrittC, StuartK (2013) Identification of essential and non-essential protein kinases by a fusion PCR method for efficient production of transgenic Trypanosoma brucei. Mol Biochem Parasitol 190: 44–49.

24. AlsfordS, TurnerDJ, ObadoSO, Sanchez-FloresA, GloverL, BerrimanM, Hertz-FowlerC, HornD (2011) High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res 21: 915–924.

25. AlsfordS, HornD (2008) Single-locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei. Mol Biochem Parasitol 161: 76–79.

26. FlaspohlerJA, JensenBC, SaveriaT, KiferCT, ParsonsM (2010) A novel protein kinase localized to lipid droplets is required for droplet biogenesis in trypanosomes. Eukaryot Cell 9: 1702–1710.

27. MonneratS, Almeida CostaCI, ForkertA, BenzC, HamiltonA, TetleyL, BurchmoreR, NovoC, MottramJC, HammartonTC (2013) Identification and functional characterisation of CRK12:CYC9, a novel cyclin-dependent kinase (CDK)-cyclin complex in Trypanosoma brucei. PLoS ONE 8: e67327.

28. KramerS (2004) Characterisation of a PKA-like kinase from Trypanosoma brucei [Thesis]. Ludwig-Maximilians-Universitat, Munchen

29. OjoKK, GillespieJR, RiechersAJ, NapuliAJ, VerlindeCL, BucknerFS, GelbMH, DomostojMM, WellsSJ, ScheerA, WellsTN, Van VoorhisWC (2008) Glycogen synthase kinase 3 is a potential drug target for African trypanosomiasis therapy. Antimicrob Agents Chemother 52: 3710–3717.

30. UrbaniakMD (2009) Casein kinase 1 isoform 2 is essential for bloodstream form Trypanosoma brucei. Mol Biochem Parasitol 166: 183–185.

31. DuszenkoM, GingerML, BrennandA, Gualdron-lopezM, ColomboMI, CoombsGH, CoppensI, JayabalasinghamB, LangsleyG, Lisboa de CastroS, Menna-BarretoR, MottramJC, NavarroM, RigdenDJ, RomanaPS, StokaV, TurkB, MichelsPAM (2011) Autophagy in protists. Autophagy 7: 127–158.

32. MoraA, KomanderD, van AaltenDM, AlessiDR (2004) PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15: 161–170.

33. JensenBC, KiferCT, ParsonsM (2011) Trypanosoma brucei: Two mitogen activated protein kinase kinases are dispensable for growth and virulence of the bloodstream form. Exp Parasitol 128: 250–255.

34. GourguechonS, WangCC (2009) CRK9 contributes to regulation of mitosis and cytokinesis in the procyclic form of Trypanosoma brucei. BMC Cell Biol 10: 68.

35. HammartonTC, ClarkJ, DouglasF, BoshartM, MottramJC (2003) Stage-specific differences in cell cycle control in Trypanosoma brucei revealed by RNA interference of a mitotic cyclin. J Biol Chem 278: 22877–22886.

36. LiZ, UmeyamaT, WangCC (2008) The chromosomal passenger complex and a mitotic kinesin interact with the Tousled-like kinase in trypanosomes to regulate mitosis and cytokinesis. PLoS ONE 3: e3814.

37. ZiegelbauerK, QuintenM, SchwarzH, PearsonTW, OverathP (1990) Synchronous differentiation of Trypanosoma brucei from bloodstream to procyclic forms in vitro. Eur J Biochem 192: 373–378.

38. ProtoWR, Castanys-MunozE, BlackA, TetleyL, JulianoL, CoombsGH, MottramJC (2011) Trypanosoma brucei metacaspase 4 is a pseudopeptidase and a virulence factor. J Biol Chem 286: 39914–39925.

39. OberholzerM, LangousisG, NguyenHT, SaadaEA, ShimogawaMM, JonssonZO, NguyenSM, WohlschlegelJA, HillKL (2011) Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei. Mol Cell Proteomics 10: M111.

40. SiegelTN, HekstraDR, WangX, DewellS, CrossGAM (2010) Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res gkq237.

41. JensenBC, SivamD, KiferCT, MylerPJ, ParsonsM (2009) Widespread variation in transcript abundance within and across developmental stages of Trypanosoma brucei. BMC Genomics 10: 482.

42. LaxmanS, RiechersA, SadilekM, SchwedeF, BeavoJA (2006) Hydrolysis products of cAMP analogs cause transformation of Trypanosoma brucei from slender to stumpy-like forms. Proc Natl Acad Sci U S A 103: 19194–19199.

43. BishopAC, UbersaxJA, PetschDT, MatheosDP, GrayNS, BlethrowJ, ShimizuE, TsienJZ, SchultzPG, RoseMD, WoodJL, MorganDO, ShokatKM (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407: 395–401.

44. JacksonAP (2007) Evolutionary consequences of a large duplication event in Trypanosoma brucei: chromosomes 4 and 8 are partial duplicons. BMC Genomics 8: 432.

45. KolevNG, FranklinJB, CarmiS, ShiH, MichaeliS, TschudiC (2010) The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog 6: e1001090.

46. UrbaniakMD, MartinDM, FergusonMA (2013) Global Quantitative SILAC Phosphoproteomics Reveals Differential Phosphorylation Is Widespread between the Procyclic and Bloodstream Form Lifecycle Stages of Trypanosoma brucei. J Proteome Res 12: 2233–2244.

47. RedmondS, VadiveluJ, FieldMC (2003) RNAit: an automated web-based tool for the selection of RNAi targets in Trypanosoma brucei. Mol Biochem Parasitol 128: 115–118.

48. HirumiH, HirumiK (1989) Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum-protein without feeder cell-layers. J Parasitol 75: 985–989.

49. HammartonTC, LillicoSG, WelburnSC, MottramJC (2005) Trypanosoma brucei MOB1 is required for accurate and efficient cytokinesis but not for exit from mitosis. Mol Microbiol 56: 104–116.

50. MundayJC, McLuskeyK, BrownE, CoombsGH, MottramJC (2011) Oligopeptidase B-deficient mutants of Leishmania major. Mol Biochem Parasitol 175: 49–57.

51. ManningG, WhyteDB, MartinezR, HunterT, SudarsanamS (2002) The protein kinase complement of the human genome. Science 298: 1912–1934.

52. AlsfordS, KawaharaT, GloverL, HornD (2005) Tagging a T. brucei RRNA locus improves stable transfection efficiency and circumvents inducible expression position effects. Mol Biochem Parasitol 144: 142–148.

53. WesleySV, HelliwellCA, SmithNA, WangMB, RouseDT, LiuQ, GoodingPS, SinghSP, AbbottD, StoutjesdijkPA, RobinsonSP, GleaveAP, GreenAG, WaterhousePM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27: 581–590.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#