Shaping Up for Battle: Morphological Control Mechanisms in Human Fungal Pathogens

article has not abstract

Vyšlo v časopise: Shaping Up for Battle: Morphological Control Mechanisms in Human Fungal Pathogens. PLoS Pathog 9(12): e32767. doi:10.1371/journal.ppat.1003795
Kategorie: Pearls
prolekare.web.journal.doi_sk: 10.1371/journal.ppat.1003795


article has not abstract


1. SudberyP, GowN, BermanJ (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12: 317–324.

2. Kwon-Chung KB, Bennett JE (1992) Medical Mycology. Philadelphia: Lea & Febinger.

3. LoHJ, KohlerJR, DiDomenicoB, LoebenbergD, CacciapuotiA, et al. (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939–949.

4. BraunBR, HeadWS, WangMX, JohnsonAD (2000) Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156: 31–44.

5. SavilleSP, LazzellAL, MonteagudoC, López-RibotJL (2003) Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2: 1053–1060.

6. CarlislePL, BanerjeeM, LazzellA, MonteagudoC, López-RibotJL, et al. (2009) Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc Natl Acad Sci U S A 106: 599–604.

7. KumamotoCA, VincesMD (2005) Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol 7: 1546–1554.

8. Heitman J, Filler SG, Edwards JE, Mitchell AP, editors (2006) Molecular principles of fungal pathogenesis. Washington, D.C.: ASM Press.

9. Calderone RA, Clancy CJ, editors (2012) Candida and Candidiasis. 2nd edition. Washington, D.C.: ASM Press.

10. Odds FC (1988) Candida and Candidosis. London: Baillière Tindall.

11. NobleSM, FrenchS, KohnLA, ChenV, JohnsonAD (2010) Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 42: 590–598.

12. KleinBS, TebbetsB (2007) Dimorphism and virulence in fungi. Curr Opin Microbiol 10: 314–319.

13. MedoffG, KobayashiGS, PainterA, TravisS (1987) Morphogenesis and pathogenicity of Histoplasma capsulatum. Infect Immun 55: 1355–1358.

14. EissenbergLG, GoldmanWE (1994) The interplay between Histoplasma capsulatum and its host cells. Balliere's Clin Infect Dis 1: 265–283.

15. DrutzDJ, FreyCL (1985) Intracellular and extracellular defenses of human phagocytes against Blastomyces dermatitidis conidia and yeasts. J Lab Clin Med 105: 737–750.

16. RappleyeCA, EissenbergLG, GoldmanWE (2007) Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proc Natl Acad Sci U S A 104: 1366–1370.

17. MillerMG, JohnsonAD (2002) White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110: 293–302.

18. ErnstJF (2000) Transcription factors in Candida albicans - environmental control of morphogenesis. Microbiology 146: 1763–1774.

19. SiH, HerndayAD, HirakawaMP, JohnsonAD, BennettRJ (2013) Candida albicans white and opaque cells undergo distinct programs of filamentous growth. PLoS Pathog 9: e1003210 doi: 10.1371/journal.ppat.1003210

20. GuanG, XieJ, TaoL, NobileCJ, SunY, et al. (2013) Bcr1 plays a central role in the regulation of opaque cell filamentation in Candida albicans. Mol Microbiol 89: 732–750.

21. Kwon-ChungKJ (1976) Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68: 821–833.

22. LinX, HullCM, HeitmanJ (2005) Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434: 1017–1021.

23. WickesBL, MayorgaME, EdmanU, EdmanJC (1996) Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the alpha-mating type. Proc Natl Acad Sci U S A 93: 7327–7331.

24. FuJ, MorrisIR, WickesBL (2013) The production of monokaryotic hyphae by Cryptococcus neoformans can be induced by high temperature arrest of the cell cycle and is independent of same-sex mating. PLoS Pathog 9: e1003335 doi: 10.1371/journal.ppat.1003335

25. WangL, ZhaiB, LinX (2012) The link between morphotype transition and virulence in Cryptococcus neoformans. PLoS Pathog 8: e1002765 doi: 10.1371/journal.ppat.1002765

26. CarlislePL, KadoshD (2013) A genome-wide transcriptional analysis of morphology determination in Candida albicans. Mol Biol Cell 24: 246–260.

27. SudberyPE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9: 737–748.

28. BeyhanS, GutierrezM, VoorhiesM, SilA (2013) A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen. PLoS Biol 11: e1001614 doi: 10.1371/journal.pbio.1001614

29. BugejaHE, HynesMJ, AdrianopoulosA (2013) HgrA is necessary and sufficient to drive hyphal growth in the dimorphic pathogen Penicillium marneffei. Mol Microbiol 88: 998–1014.

30. NemecekJC, WüthrichM, KleinBS (2006) Global control of dimorphism and virulence in fungi. Science 312: 583–588.

31. MagditchDA, LiuTB, XueC, IdnurmA (2012) DNA mutations mediate microevolution between host-adapted forms of the pathogenic fungus Cryptococcus neoformans. PLoS Pathog 8: e1002936 doi: 10.1371/journal.ppat.1002936

32. SteenbergenJN, ShumanHA, CasadevallA (2001) Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci U S A 98: 15245–15250.

33. HniszD, BardetAF, NobileCJ, PetryshynA, GlaserW, et al. (2012) A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet 8: e1003118 doi: 10.1371/journal.pgen.1003118

34. HniszD, MajerO, FrohnerIE, KomnenovicV, KuchlerK (2010) The Set3/Hos2 histone deacetylase complex attenuates cAMP/PKA signaling to regulate morphogenesis and virulence of Candida albicans. PLoS Pathog 6: e1000889 doi: 10.1371/journal.ppat.1000889

35. Lopes da RosaJ, KaufmanPD (2012) Chromatin-mediated Candida albicans virulence. Biochim Biophys Acta 1819: 349–355.

36. LuY, SuC, WangA, LiuH (2011) Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol 9: e1001105 doi: 10.1371/journal.pbio.1001105

37. LuY, SuC, LiuH (2012) A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans. PLoS Pathog 8: e1002663 doi: 10.1371/journal.ppat.1002663

38. O'MearaTR, HayC, PriceMS, GilesS, AlspaughJA (2010) Cryptococcus neoformans histone acetyltransferase Gcn5 regulates fungal adaptation to the host. Eukaryot Cell 9: 1193–1202.

39. ClearyIA, LazzellAL, MonteagudoC, ThomasDP, SavilleSP (2012) BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence. Mol Microbiol 85: 557–573.

40. BanerjeeM, ThompsonDS, LazzellA, CarlislePL, PierceC, et al. (2008) UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol Biol Cell 19: 1354–1365.

Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens

2013 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.


Nemáte účet?  Registrujte sa