#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

An Increasing Danger of Zoonotic Orthopoxvirus Infections


On May 8, 1980, the World Health Assembly at its 33rd session solemnly declared that the world and all its peoples had won freedom from smallpox and recommended ceasing the vaccination of the population against smallpox. Currently, a larger part of the world population has no immunity not only against smallpox but also against other zoonotic orthopoxvirus infections. Recently, recorded outbreaks of orthopoxvirus diseases not only of domestic animals but also of humans have become more frequent. All this indicates a new situation in the ecology and evolution of zoonotic orthopoxviruses. Analysis of state-of-the-art data on the phylogenetic relationships, ecology, and host range of orthopoxviruses—etiological agents of smallpox (variola virus, VARV), monkeypox (MPXV), cowpox (CPXV), vaccinia (VACV), and camelpox (CMLV)—as well as the patterns of their evolution suggests that a VARV-like virus could emerge in the course of natural evolution of modern zoonotic orthopoxviruses. Thus, there is an insistent need for organization of the international control over the outbreaks of zoonotic orthopoxvirus infections in various countries to provide a rapid response and prevent them from developing into epidemics.


Vyšlo v časopise: An Increasing Danger of Zoonotic Orthopoxvirus Infections. PLoS Pathog 9(12): e32767. doi:10.1371/journal.ppat.1003756
Kategorie: Opinion
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003756

Souhrn

On May 8, 1980, the World Health Assembly at its 33rd session solemnly declared that the world and all its peoples had won freedom from smallpox and recommended ceasing the vaccination of the population against smallpox. Currently, a larger part of the world population has no immunity not only against smallpox but also against other zoonotic orthopoxvirus infections. Recently, recorded outbreaks of orthopoxvirus diseases not only of domestic animals but also of humans have become more frequent. All this indicates a new situation in the ecology and evolution of zoonotic orthopoxviruses. Analysis of state-of-the-art data on the phylogenetic relationships, ecology, and host range of orthopoxviruses—etiological agents of smallpox (variola virus, VARV), monkeypox (MPXV), cowpox (CPXV), vaccinia (VACV), and camelpox (CMLV)—as well as the patterns of their evolution suggests that a VARV-like virus could emerge in the course of natural evolution of modern zoonotic orthopoxviruses. Thus, there is an insistent need for organization of the international control over the outbreaks of zoonotic orthopoxvirus infections in various countries to provide a rapid response and prevent them from developing into epidemics.


Zdroje

1. Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID (1988) Smallpox and its eradication. Geneva: World Health Organization. 1460 p.

2. Shchelkunov SN, Marennikova SS, Moyer RW (2005) Orthopoxviruses pathogenic for humans. New York: Springer. 425 p.

3. ShchelkunovSN, ResenchukSM, TotmeninAV, BlinovVM, MarennikovaSS, et al. (1993) Comparison of the genetic maps of variola and vaccinia viruses. FEBS Lett 327: 321–324.

4. ShchelkunovSN, SafronovPF, TotmeninAV, PetrovNA, RyazankinaOI, et al. (1998) The genomic sequence analysis of the left and fight species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology 243: 432–460.

5. ShchelkunovSN, TotmeninAV, LoparevVN, SafronovPF, GutorovVV, et al. (2000) Alastrim smallpox variola minor virus genome DNA sequences. Virology 266: 361–386.

6. ShchelkunovSN, TotmeninAV, BabkinIV, SafronovPF, RyazankinaOI, et al. (2001) Human monkeypox and smallpox viruses: genomic comparison. FEBS Lett 509: 66–70.

7. ShchelkunovSN, TotmeninAV, SafronovPF, MikheevMV, GutorovVV, et al. (2002) Analysis of the monkeypox virus genome. Virology 297: 172–194.

8. GubserC, SmithGL (2002) The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J Gen Virol 83: 855–872.

9. HendricksonRC, WangC, HatcherEL, LefkowitzEJ (2010) Orthopoxvirus genome evolution: the role of gene loss. Viruses 2: 1933–1967.

10. MeyerH, TotmeninA, GavrilovaE, ShchelkunovS (2005) Variola and camelpox virus-specific sequences are part of a single large open reading frame identified in two German cowpox virus strains. Virus Res 108: 39–43.

11. GubserC, HueS, KellamP, SmithGL (2004) Poxvirus genomes: a phylogenetic analysis. J Gen Virol 85: 105–117.

12. ShchelkunovSN (2012) Orthopoxvirus genes that mediate disease virulence and host tropism. Adv Virol 2012: 524743.

13. ShchelkunovSN (2009) How long ago did smallpox virus emerge? Arch Virol 154: 1865–1871.

14. ShchelkunovSN, TotmeninAV (1995) Two types of deletions in orthopoxvirus genomes. Virus Genes 9: 231–245.

15. CoulsonD, UptonC (2011) Characterization of indels in poxvirus genomes. Virus Genes 42: 171–177.

16. EldeNC, ChildSJ, EickbushMT, KitzmanJO, RogersKS, et al. (2012) Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell 150: 831–841.

17. ShchelkunovSN (2011) Emergence and reemergence of smallpox: the need in development of a new generation smallpox vaccine. Vaccine 29S: D49–53.

18. DownieAW (1939) The immunological relationship of the virus of spontaneous cowpox to vaccinia virus. Br J Exp Pathol 20: 158–176.

19. DownieAW, DumbellKR (1956) Pox viruses. Annu Rev Microbiol 10: 237–252.

20. BaxbyD (1977) The origins of vaccinia virus. J Infect Dis 136: 453–455.

21. TulmanER, DelhonG, AfonsoCL, LuZ, ZsakL, et al. (2006) Genome of horsepox virus. J Virol 80: 9244–9258.

22. TrindadeGS, EmersonGL, CarrollDS, KroonEG, DamonIK (2007) Brazilian vaccinia viruses and their origins. Emerg Infect Dis 13: 965–972.

23. da FonsecaFG, TrindadeGS, SilvaRL, BonjardimCA, FerreiraPC, et al. (2002) Characterization of a vaccinia-like virus isolated in a Brazilian forest. J Gen Virol 83: 223–228.

24. DamasoCR, EspositoJJ, ConditRC, MoussatcheN (2000) An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. Virology 277: 439–449.

25. LeiteJA, DrumondBP, TrindadeGS, LobatoZI, da FonsecaFG, et al. (2005) Passatempo virus, a vaccinia virus strain, Brazil. Emerg Infect Dis 11: 1935–1938.

26. TrindadeGS, LobatoZI, DrumondBP, LeiteJA, TrigueiroRC, et al. (2006) Isolation of two vaccinia virus strains from a single bovine vaccinia outbreak in rural area from Brazil: implications on the emergence of zoonotic orthopoxviruses. Am J Trop Med Hyg 75: 486–490.

27. MegidJ, BorgesIA, AbrahãoJS, TrindadeGS, AppolinarioCM, et al. (2012) Vaccinia virus zoonotic infection, Sao Paulo State, Brazil. Emerg Infect Dis 18: 189–191.

28. CamposRK, BrumMC, NogueiraCE, DrumondBP, AlvesPA, et al. (2011) Assessing the variability of Brazilian Vaccinia virus isolates from a horse exanthematic lesion: coinfection with distinct viruses. Arch Virol 156: 275–283.

29. CargneluttiJF, SchmidtC, MasudaEK, NogueiraPR, WeiblenR, et al. (2012) Vaccinia viruses isolated from skin infection in horses produced cutaneous and systemic disease in experimentally infected rabbits. Res Vet Sci 93: 1070–1075.

30. AbrahãoJS, GuedesMIM, TrindadeGS, FonsecaFG, CamposRK, et al. (2009) One more piece in the VACV ecological puzzle: could peridomestic rodents be the link between wildlife and bovine vaccinia outbreaks in Brazil? PLoS ONE 4: e7428 doi:10.1371/journal.pone.0007428.

31. D'AnunciaçãoL, GuedesMIM, OliveiraTL, RehfeldI, BonjardimCA, et al. (2012) Filling one more gap: experimental evidence of horizontal transmission of Vaccinia virus between bovines and rodents. Vector Borne Zoonotic Dis 12: 61–64.

32. DrumondBP, LeiteJA, da FonsecaFG, BonjardimCA, FerreiraPC, et al. (2008) Brazilian Vaccinia virus strains are genetically divergent and differ from the Lister vaccine strain. Microbes Infect 10: 185–197.

33. LalSM, SinghIP (1977) Buffalopox - a review. Trop Anim Health Prod 9: 107–112.

34. SinghRK, HosamaniM, BalamuruganV, SatheeshCC, RasoolTJ, et al. (2006) Comparative sequence analysis of envelope protein genes of Indian buffalopox virus isolates. Arch Virol 151: 1995–2005.

35. BhanuprakashV, VenkatesanG, BalamuruganV, HosamaniM, YogisharadhyaR, et al. (2010) Zoonotic infections of buffalopox in India. Zoonoses Public Health 57: e149–155.

36. VenkatesanG, BalamuruganV, PrabhuM, YogisharadhyaR, BoraDP, et al. (2010) Emerging and re-emerging zoonotic buffalopox infection: a severe outbreak in Kolhapur (Maharashtra), India. Vet Ital 46: 439–448.

37. YadavS, HosamaniM, BalamuruganV, BhanuprakashV, SinghRK (2010) Partial genetic characterization of viruses isolated from pox-like infection in cattle and buffaloes: evidence of buffalo pox virus circulation in Indian cows. Arch Virol 155: 255–261.

38. BeraBCh, ShanmugasundaramK, BaruaS, AnandT, RiyeshT, et al. (2012) Sequence and phylogenetic analysis of host-range (E3L, K3L, and C7L) and structural protein (B5R) genes of buffalopox virus isolates from buffalo, cattle, and human in India. Virus Genes 45: 488–498.

39. BaxbyD (1977) Poxvirus hosts and reservoirs. Arch Virol 55: 169–179.

40. EssbauerS, PfefferM, MeyerH (2010) Zoonotic poxviruses. Vet Microbiol 140: 229–236.

41. KinnunenPM, HenttonenH, HoffmannB, KallioER, KorthaseC, et al. (2011) Orthopox virus infections in Eurasian rodents. Vector Borne Zoonot Dis 11: 1133–1140.

42. TrylandM, OkekeMI, SegerstadCH, MornerT, TraavikT, et al. (2011) Orthopoxvirus DNA in Eurasian lynx, Sweden. Emerg Infect Dis 17: 626–632.

43. CampeH, ZimmermannP, GlosK, BayerM, BergemannH, et al. (2009) Cowpox virus transmission from pet rats to humans, Germany. Emerg Infect Dis 15: 777–780.

44. NinoveL, DomartY, VervelC, VoinotC, SalezN, et al. (2009) Cowpox virus transmission from pet rats to humans, France. Emerg Infect Dis 15: 781–784.

45. KurthA, StraubeM, KuczkaA, DunscheAJ, MeyerH, et al. (2009) Cowpox virus outbreak in banded mongooses (Mungos mungo) and jaguarundis (Herpailurus yagouaroundi) with a time-delayed infection to humans. PLoS ONE 4: e6883 doi:10.1371/journal.pone.0006883.

46. CardetiG, BrozziA, EleniC, PoliciN, D'AlterioG, et al. (2011) Cowpox virus in llama, Italy. Emerg Infect Dis 17: 1513–1515.

47. FavierAL, FlusinO, LepreuxS, FleuryH, LabrezeC, et al. (2011) Necrotic ulcerated lesion in a young boy caused by cowpox virus infection. Case Rep Dermatol 3: 186–194.

48. PilaskiJ, RosenA, DaraiG (1986) Comparative analysis of the genomes of orthopoxviruses isolated from elephant, rhinoceros, and okapi by restriction enzymes. Arch Virol 88: 135–142.

49. KaysserP, von BomhardW, DobrzykowskiL, MeyerH (2010) Genetic diversity of feline cowpox virus, Germany 2000–2008. Vet Microbiol 141: 282–288.

50. CarrollDS, EmersonGL, LiY, SammonsS, OlsonV, et al. (2011) Chasing Jenner's vaccine: revisiting Cowpox virus classification. PLoS ONE 6: e23086 doi:10.1371/journal.pone.0023086.

51. JezekZ, FennerF (1988) Human monkeypox. Monog Virol 17: 1–140.

52. RimoinAW, MulembakaniPM, JonstonSC, Lloyd SmithJO, KisaluNK, et al. (2010) Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc Natl Acad Sci U S A 107: 16262–16267.

53. Di GiulioDB, EckburgPB (2004) Human monkeypox: an emerging zoonosis. Lancet Infect Dis 4: 15–25.

54. Al-Zi'AbiO, HishikawaH, MeyerH (2007) The first outbreak of camelpox in Syria. J Vet Med Sci 69: 541–543.

55. DuraffourS, MeyerH, AndreiG, SnoeckR (2011) Camelpox virus. Antiviral Res 92: 167–186.

56. BeraBC, ShanmugasundaramK, BaruaS, VenkatesanG, VirmaniN, et al. (2011) Zoonotic cases of camelpox infection in India. Vet Microbiol 152: 29–38.

57. DomingoE (2010) Mechanisms of viral emergence. Vet Res 41: 38.

58. ParrishCR, HolmesEC, MorensDM, ParkEC, BurkeDS, et al. (2008) Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev 72: 457–470.

59. WolfeND, DunavanCP, DiamondJ (2007) Origins of major human infectious diseases. Nature 447: 279–283.

60. Alcami A, Damon I, Evans D, Huggins JW, Hughes C, et al. (2010) Scientific review of variola virus research, 1999–2010. Geneva: World Health Organization. WHO/HSE/GAR/BDP/2010.3.

61. GreenbergRN, OvertonET, HaasDW, FrankI, GoldmanM, et al. (2013) Safety, immunogenicity, and surrogate markers of clinical efficacy for modified vaccinia Ankara as a smallpox vaccine in HIV-infected subjects. J Infect Dis 207: 749–758.

62. WHO Advisory Committee on Variola Virus Research (2011) Report of the thirteenth meeting, Geneva, Switzerland, 31 October–1 November 2011. Geneva: World Health Organization. WHO/HSE/GAR/BDP/2011.2.

63. WHO Advisory Committee on Variola Virus Research (May 2013) Report of the fourteenth meeting, Geneva, Switzerland, 16–17 October 2012. Geneva: World Health Organization. WHO/HSE/PED/CED/2013.1.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2013 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#