-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
A Toxin-Antitoxin Module of Promotes Virulence in Mice
Toxin-antitoxin (TA) modules are widely prevalent in both bacteria and archaea. Originally described as stabilizing elements of plasmids, TA modules are also widespread on bacterial chromosomes. These modules promote bacterial persistence in response to specific environmental stresses. So far, the possibility that TA modules could be involved in bacterial virulence has been largely neglected, but recent comparative genomic studies have shown that the presence of TA modules is significantly associated with the pathogenicity of bacteria. Using Salmonella as a model, we investigated whether TA modules help bacteria to overcome the stress conditions encountered during colonization, thereby supporting virulence in the host. By bioinformatics analyses, we found that the genome of the pathogenic bacterium Salmonella Typhimurium encodes at least 11 type II TA modules. Several of these are conserved in other pathogenic strains but absent from non-pathogenic species indicating that certain TA modules might play a role in Salmonella pathogenicity. We show that one TA module, hereafter referred to as sehAB, plays a transient role in virulence in perorally inoculated mice. The use of a transcriptional reporter demonstrated that bacteria in which sehAB is strongly activated are predominantly localized in the mesenteric lymph nodes. In addition, sehAB was shown to be important for the survival of Salmonella in these peripheral lymphoid organs. These data indicate that the transient activation of a type II TA module can bring a selective advantage favouring virulence and demonstrate that TA modules are engaged in Salmonella pathogenesis.
Vyšlo v časopise: A Toxin-Antitoxin Module of Promotes Virulence in Mice. PLoS Pathog 9(12): e32767. doi:10.1371/journal.ppat.1003827
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003827Souhrn
Toxin-antitoxin (TA) modules are widely prevalent in both bacteria and archaea. Originally described as stabilizing elements of plasmids, TA modules are also widespread on bacterial chromosomes. These modules promote bacterial persistence in response to specific environmental stresses. So far, the possibility that TA modules could be involved in bacterial virulence has been largely neglected, but recent comparative genomic studies have shown that the presence of TA modules is significantly associated with the pathogenicity of bacteria. Using Salmonella as a model, we investigated whether TA modules help bacteria to overcome the stress conditions encountered during colonization, thereby supporting virulence in the host. By bioinformatics analyses, we found that the genome of the pathogenic bacterium Salmonella Typhimurium encodes at least 11 type II TA modules. Several of these are conserved in other pathogenic strains but absent from non-pathogenic species indicating that certain TA modules might play a role in Salmonella pathogenicity. We show that one TA module, hereafter referred to as sehAB, plays a transient role in virulence in perorally inoculated mice. The use of a transcriptional reporter demonstrated that bacteria in which sehAB is strongly activated are predominantly localized in the mesenteric lymph nodes. In addition, sehAB was shown to be important for the survival of Salmonella in these peripheral lymphoid organs. These data indicate that the transient activation of a type II TA module can bring a selective advantage favouring virulence and demonstrate that TA modules are engaged in Salmonella pathogenesis.
Zdroje
1. GerdesK, MaisonneuveE (2012) Bacterial persistence and toxin-antitoxin Loci. Annu Rev Microbiol 66 : 103–123 doi:10.1146/annurev-micro-092611-150159
2. YamaguchiY, ParkJ-H, InouyeM (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45 : 61–79 doi:10.1146/annurev-genet-110410-132412
3. FineranPC, BlowerTR, FouldsIJ, HumphreysDP, LilleyKS, et al. (2009) The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci USA 106 : 894–899 doi:10.1073/pnas.0808832106
4. MasudaH, TanQ, AwanoN, WuK-P, InouyeM (2012) YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Mol Microbiol 84 : 979–989 doi:10.1111/j.1365-2958.2012.08068.x
5. WangX, LordDM, ChengH-Y, OsbourneDO, HongSH, et al. (2012) A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 8 : 855–861 doi:10.1038/nchembio.1062
6. MakarovaKS, WolfYI, KooninEV (2009) Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 4 : 19 doi:10.1186/1745-6150-4-19
7. LeplaeR, GeeraertsD, HallezR, GuglielminiJ, DrèzeP, et al. (2011) Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Research 39 : 5513–5525 doi:10.1093/nar/gkr131
8. LewisK (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5 : 48–56 doi:10.1038/nrmicro1557
9. PandeyDP, GerdesK (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Research 33 : 966–976 doi:10.1093/nar/gki201
10. GeorgiadesK, RaoultD (2011) Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin-antitoxin modules. PLoS ONE 6: e17962 doi:10.1371/journal.pone.0017962
11. AudolyG, VincentelliR, EdouardS, GeorgiadesK, MediannikovO, et al. (2011) Effect of rickettsial toxin VapC on its eukaryotic host. PLoS ONE 6: e26528 Available: http://www.ncbi.nlm.nih.gov.gate1.inist.fr/pubmed?term=Effect%20of%20Rickettsial%20Toxin%20VapC%20on%20Its%20Eukaryotic%20Host.
12. NortonJP, MulveyMA (2012) Toxin-Antitoxin Systems Are Important for Niche-Specific Colonization and Stress Resistance of Uropathogenic Escherichia coli. PLoS Pathog 8: e1002954 doi:10.1371/journal.ppat.1002954
13. Douesnard-MaloF, DaigleF (2011) Increased persistence of Salmonella enterica serovar Typhi in the presence of Acanthamoeba castellanii. Appl Environ Microbiol 77 : 7640–7646 doi:10.1128/AEM.00699-11
14. BleasdaleB, LottPJ, JagannathanA, StevensMP, BirtlesRJ, et al. (2009) The Salmonella pathogenicity island 2-encoded type III secretion system is essential for the survival of Salmonella enterica serovar Typhimurium in free-living amoebae. Appl Environ Microbiol 75 : 1793–1795 doi:10.1128/AEM.02033-08
15. SevinEW, Barloy-HublerF (2007) RASTA-Bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol 8: R155 doi:10.1186/gb-2007-8-8-r155
16. JørgensenMG, PandeyDP, JaskolskaM, GerdesK (2009) HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. J Bacteriol 191 : 1191–1199 doi:10.1128/JB.01013-08
17. WintherKS, GerdesK (2009) Ectopic production of VapCs from Enterobacteria inhibits translation and trans-activates YoeB mRNA interferase. Mol Microbiol 72 : 918–930 doi:10.1111/j.1365-2958.2009.06694.x
18. BäumlerAJ (1997) The record of horizontal gene transfer in Salmonella. Trends Microbiol 5 : 318–322 doi:10.1016/S0966-842X(97)01082-2
19. RDC T (2010) R: A Language and Environment for Statistical Computing.
20. Fivian-HughesAS, DavisEO (2010) Analyzing the regulatory role of the HigA antitoxin within Mycobacterium tuberculosis. J Bacteriol 192 : 4348–4356 doi:10.1128/JB.00454-10
21. BuddePP, DavisBM, YuanJ, WaldorMK (2007) Characterization of a higBA toxin-antitoxin locus in Vibrio cholerae. J Bacteriol 189 : 491–500 doi:10.1128/JB.00909-06
22. HoodRD, SinghP, HsuF, GüvenerT, CarlMA, et al. (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7 : 25–37 doi:10.1016/j.chom.2009.12.007
23. AusselL, ZhaoW, HébrardM, GuilhonA-A, VialaJPM, et al. (2011) Salmonella detoxifying enzymes are sufficient to cope with the host oxidative burst. Mol Microbiol 80 : 628–640 doi:10.1111/j.1365-2958.2011.07611.x
24. LinehanSA, RytkönenA, YuX-J, LiuM, HoldenDW (2005) SlyA regulates function of Salmonella pathogenicity island 2 (SPI-2) and expression of SPI-2-associated genes. Infect Immun 73 : 4354–4362 doi:10.1128/IAI.73.7.4354-4362.2005
25. Hensel, SheaJE, WatermanSR, MundyR, NikolausT, et al. (1998) Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 30 : 163–174.
26. SteinMA, LeungKY, ZwickM, PortilloFG-D, FinlayBB (1996) Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol Microbiol 20 : 151–164 doi:10.1111/j.1365-2958.1996.tb02497.x
27. SheaJE, BeuzonCR, GleesonC, MundyR, HoldenDW (1999) Influence of the Salmonella typhimurium pathogenicity island 2 type III secretion system on bacterial growth in the mouse. Infect Immun 67 : 213–219.
28. HenryT, CouillaultC, RockenfellerP, BoucrotE, DumontA, et al. (2006) The Salmonella effector protein PipB2 is a linker for kinesin-1. Proc Natl Acad Sci USA 103 : 13497–13502 doi:10.1073/pnas.0605443103
29. BeuzónCR, UnsworthKE, HoldenDW (2001) In vivo genetic analysis indicates that PhoP-PhoQ and the Salmonella pathogenicity island 2 type III secretion system contribute independently to Salmonella enterica serovar Typhimurium virulence. Infect Immun 69 : 7254–7261 doi:10.1128/IAI.69.12.7254-7261.2001
30. BeuzónCR, HoldenDW (2001) Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo. Microbes Infect 3 : 1345–1352.
31. RubyT, McLaughlinL, GopinathS, MonackD (2012) Salmonella's long-term relationship with its host. FEMS Microbiol Rev 36 : 600–615 doi:10.1111/j.1574-6976.2012.00332.x
32. MonackDM, BouleyDM, FalkowS (2004) Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J Exp Med 199 : 231–241 doi:10.1084/jem.20031319
33. CarterPB, CollinsFM (1974) The route of enteric infection in normal mice. J Exp Med 139 : 1189–1203.
34. ErikssonS, LucchiniS, ThompsonA, RhenM, HintonJCD (2003) Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47 : 103–118.
35. SlatteryA, VictorsenAH, BrownA, HillmanK, PhillipsGJ (2013) Isolation of highly persistent mutants of Salmonella enterica serovar typhimurium reveals a new toxin-antitoxin module. J Bacteriol 195 : 647–657 doi:10.1128/JB.01397-12
36. KooninEV, WolfYI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Research 36 : 6688–6719 doi:10.1093/nar/gkn668
37. GalánJE, CurtissR (1989) Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA 86 : 6383–6387.
38. JonesBD, GhoriN, FalkowS (1994) Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 180 : 15–23.
39. LelouardH, HenriS, de BovisB, MugnierB, Chollat-NamyA, et al. (2010) Pathogenic bacteria and dead cells are internalized by a unique subset of Peyer's patch dendritic cells that express lysozyme. Gastroenterology 138 : 173–84.e1–3 doi:10.1053/j.gastro.2009.09.051
40. Christensen-DalsgaardM, JørgensenMG, GerdesK (2010) Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol Microbiol 75 : 333–348 doi:10.1111/j.1365-2958.2009.06969.x
41. ChaudhuriRR, PetersSE, PleasanceSJ, NorthenH, WillersC, et al. (2009) Comprehensive identification of Salmonella enterica serovar typhimurium genes required for infection of BALB/c mice. PLoS Pathog 5: e1000529 doi:10.1371/journal.ppat.1000529
42. MatéMJ, VincentelliR, FoosN, RaoultD, CambillauC, et al. (2011) Crystal structure of the DNA-bound VapBC2 antitoxin/toxin pair from Rickettsia felis. Nucleic Acids Research doi:10.1093/nar/gkr1167
43. BrownBL, GrigoriuS, KimY, ArrudaJM, DavenportA, et al. (2009) Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathog 5: e1000706 doi:10.1371/journal.ppat.1000706
44. NiedergangF, SirardJC, BlancCT, KraehenbuhlJP (2000) Entry and survival of Salmonella typhimurium in dendritic cells and presentation of recombinant antigens do not require macrophage-specific virulence factors. Proc Natl Acad Sci USA 97 : 14650–14655 doi:10.1073/pnas.97.26.14650
45. RamageHR, ConnollyLE, CoxJS (2009) Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5: e1000767 doi:10.1371/journal.pgen.1000767
46. DatsenkoKA, WannerBL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97 : 6640–6645 doi:10.1073/pnas.120163297
47. ValdiviaRH, FalkowS (1996) Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol 22 : 367–378.
48. MayerMP (1995) A new set of useful cloning and expression vectors derived from pBlueScript. Gene 163 : 41–46.
49. De la CruzMA, Fernández-MoraM, GuadarramaC, Flores-ValdezMA, BustamanteVH, et al. (2007) LeuO antagonizes H-NS and StpA-dependent repression in Salmonella enterica ompS1. Mol Microbiol 66 : 727–743 doi:10.1111/j.1365-2958.2007.05958.x
50. SchroederN, HenryT, de ChastellierC, ZhaoW, GuilhonA-A, et al. (2010) The virulence protein SopD2 regulates membrane dynamics of Salmonella-containing vacuoles. PLoS Pathog 6: e1001002 doi:10.1371/journal.ppat.1001002
51. GotfredsenM, GerdesK (1998) The Escherichia coli relBE genes belong to a new toxin-antitoxin gene family. Mol Microbiol 29 : 1065–1076.
52. AizenmanE, Engelberg-KulkaH, GlaserG (1996) An Escherichia coli chromosomal “addiction module” regulated by guanosine [corrected] 3″,5-″bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci USA 93 : 6059–6063.
53. MotiejūnaitėR, ArmalytėJ, MarkuckasA, SužiedėlienėE (2007) Escherichia coli dinJ-yafQ genes act as a toxin-antitoxin module. FEMS Microbiol Lett 268 : 112–119 doi:10.1111/j.1574-6968.2006.00563.x
54. HazanR, SatB, RechesM, Engelberg-KulkaH (2001) Postsegregational killing mediated by the P1 phage “addiction module” phd-doc requires the Escherichia coli programmed cell death system mazEF. J Bacteriol 183 : 2046–2050 doi:10.1128/JB.183.6.2046-2050.2001
55. Christensen-DalsgaardM, GerdesK (2006) Two higBA loci in the Vibrio cholerae superintegron encode mRNA cleaving enzymes and can stabilize plasmids. Mol Microbiol 62 : 397–411 doi:10.1111/j.1365-2958.2006.05385.x
56. AfifH, AllaliN, CouturierM, Van MelderenL (2001) The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Mol Microbiol 41 : 73–82.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium
Článek Parental Transfer of the Antimicrobial Protein LBP/BPI Protects Eggs against Oomycete InfectionsČlánek Immune Therapeutic Strategies in Chronic Hepatitis B Virus Infection: Virus or Inflammation Control?Článek Coronaviruses as DNA Wannabes: A New Model for the Regulation of RNA Virus Replication FidelityČlánek CRISPR-Cas Immunity against Phages: Its Effects on the Evolution and Survival of Bacterial PathogensČlánek The Cyst Wall Protein CST1 Is Critical for Cyst Wall Integrity and Promotes Bradyzoite PersistenceČlánek The Malarial Serine Protease SUB1 Plays an Essential Role in Parasite Liver Stage Development
Článok vyšiel v časopisePLOS Pathogens
Najčítanejšie tento týždeň
2013 Číslo 12- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
-
Všetky články tohto čísla
- Host Susceptibility Factors to Bacterial Infections in Type 2 Diabetes
- LysM Effectors: Secreted Proteins Supporting Fungal Life
- Influence of Mast Cells on Dengue Protective Immunity and Immune Pathology
- Innate Lymphoid Cells: New Players in IL-17-Mediated Antifungal Immunity
- Cytoplasmic Viruses: Rage against the (Cellular RNA Decay) Machine
- Balancing Stability and Flexibility within the Genome of the Pathogen
- The Evolution of Transmissible Prions: The Role of Deformed Templating
- Parental Transfer of the Antimicrobial Protein LBP/BPI Protects Eggs against Oomycete Infections
- Host Defense via Symbiosis in
- Regulatory Circuits That Enable Proliferation of the Fungus in a Mammalian Host
- Immune Therapeutic Strategies in Chronic Hepatitis B Virus Infection: Virus or Inflammation Control?
- Burning Down the House: Cellular Actions during Pyroptosis
- Coronaviruses as DNA Wannabes: A New Model for the Regulation of RNA Virus Replication Fidelity
- CRISPR-Cas Immunity against Phages: Its Effects on the Evolution and Survival of Bacterial Pathogens
- Combining Regulatory T Cell Depletion and Inhibitory Receptor Blockade Improves Reactivation of Exhausted Virus-Specific CD8 T Cells and Efficiently Reduces Chronic Retroviral Loads
- Shaping Up for Battle: Morphological Control Mechanisms in Human Fungal Pathogens
- Identification of the Virulence Landscape Essential for Invasion of the Human Colon
- Nodular Inflammatory Foci Are Sites of T Cell Priming and Control of Murine Cytomegalovirus Infection in the Neonatal Lung
- Hepatitis B Virus Disrupts Mitochondrial Dynamics: Induces Fission and Mitophagy to Attenuate Apoptosis
- Mycobacterial MazG Safeguards Genetic Stability Housecleaning of 5-OH-dCTP
- Systematic MicroRNA Analysis Identifies ATP6V0C as an Essential Host Factor for Human Cytomegalovirus Replication
- Placental Syncytium Forms a Biophysical Barrier against Pathogen Invasion
- The CD8-Derived Chemokine XCL1/Lymphotactin Is a Conformation-Dependent, Broad-Spectrum Inhibitor of HIV-1
- Cyclin A Degradation by Primate Cytomegalovirus Protein pUL21a Counters Its Innate Restriction of Virus Replication
- Genome-Wide RNAi Screen Identifies Novel Host Proteins Required for Alphavirus Entry
- Zinc Sequestration: Arming Phagocyte Defense against Fungal Attack
- The Cyst Wall Protein CST1 Is Critical for Cyst Wall Integrity and Promotes Bradyzoite Persistence
- Biphasic Euchromatin-to-Heterochromatin Transition on the KSHV Genome Following Infection
- The Malarial Serine Protease SUB1 Plays an Essential Role in Parasite Liver Stage Development
- HIV-1 Vpr Accelerates Viral Replication during Acute Infection by Exploitation of Proliferating CD4 T Cells
- A Human Torque Teno Virus Encodes a MicroRNA That Inhibits Interferon Signaling
- The ArlRS Two-Component System Is a Novel Regulator of Agglutination and Pathogenesis
- An In-Depth Comparison of Latent HIV-1 Reactivation in Multiple Cell Model Systems and Resting CD4+ T Cells from Aviremic Patients
- Enterohemorrhagic Hemolysin Employs Outer Membrane Vesicles to Target Mitochondria and Cause Endothelial and Epithelial Apoptosis
- Overcoming Antigenic Diversity by Enhancing the Immunogenicity of Conserved Epitopes on the Malaria Vaccine Candidate Apical Membrane Antigen-1
- The Type-Specific Neutralizing Antibody Response Elicited by a Dengue Vaccine Candidate Is Focused on Two Amino Acids of the Envelope Protein
- Tmprss2 Is Essential for Influenza H1N1 Virus Pathogenesis in Mice
- Signatures of Pleiotropy, Economy and Convergent Evolution in a Domain-Resolved Map of Human–Virus Protein–Protein Interaction Networks
- Interference with the Host Haemostatic System by Schistosomes
- RocA Truncation Underpins Hyper-Encapsulation, Carriage Longevity and Transmissibility of Serotype M18 Group A Streptococci
- Gene Fitness Landscapes of at Important Stages of Its Life Cycle
- Phagocytosis Escape by a Protein That Connects Complement and Coagulation Proteins at the Bacterial Surface
- t Is a Structurally Novel Crohn's Disease-Associated Superantigen
- An Increasing Danger of Zoonotic Orthopoxvirus Infections
- Myeloid Dendritic Cells Induce HIV-1 Latency in Non-proliferating CD4 T Cells
- Transcriptional Analysis of Murine Macrophages Infected with Different Strains Identifies Novel Regulation of Host Signaling Pathways
- Serotonergic Chemosensory Neurons Modify the Immune Response by Regulating G-Protein Signaling in Epithelial Cells
- Genome-Wide Detection of Fitness Genes in Uropathogenic during Systemic Infection
- Induces an Unfolded Protein Response via TcpB That Supports Intracellular Replication in Macrophages
- Intestinal CD103+ Dendritic Cells Are Key Players in the Innate Immune Control of Infection in Neonatal Mice
- Emerging Functions for the RNome
- KSHV MicroRNAs Mediate Cellular Transformation and Tumorigenesis by Redundantly Targeting Cell Growth and Survival Pathways
- HrpA, an RNA Helicase Involved in RNA Processing, Is Required for Mouse Infectivity and Tick Transmission of the Lyme Disease Spirochete
- A Toxin-Antitoxin Module of Promotes Virulence in Mice
- Real-Time Imaging of the Intracellular Glutathione Redox Potential in the Malaria Parasite
- Hypoxia Inducible Factor Signaling Modulates Susceptibility to Mycobacterial Infection via a Nitric Oxide Dependent Mechanism
- Novel Strategies to Enhance Vaccine Immunity against Coccidioidomycosis
- Dual Expression Profile of Type VI Secretion System Immunity Genes Protects Pandemic
- —What Makes the Species a Ubiquitous Human Fungal Pathogen?
- αvβ6- and αvβ8-Integrins Serve As Interchangeable Receptors for HSV gH/gL to Promote Endocytosis and Activation of Membrane Fusion
- -Induced Activation of EGFR Prevents Autophagy Protein-Mediated Killing of the Parasite
- Semen CD4 T Cells and Macrophages Are Productively Infected at All Stages of SIV infection in Macaques
- PLOS Pathogens
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Influence of Mast Cells on Dengue Protective Immunity and Immune Pathology
- Host Defense via Symbiosis in
- Coronaviruses as DNA Wannabes: A New Model for the Regulation of RNA Virus Replication Fidelity
- Myeloid Dendritic Cells Induce HIV-1 Latency in Non-proliferating CD4 T Cells
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy