A Toxin-Antitoxin Module of Promotes Virulence in Mice


Toxin-antitoxin (TA) modules are widely prevalent in both bacteria and archaea. Originally described as stabilizing elements of plasmids, TA modules are also widespread on bacterial chromosomes. These modules promote bacterial persistence in response to specific environmental stresses. So far, the possibility that TA modules could be involved in bacterial virulence has been largely neglected, but recent comparative genomic studies have shown that the presence of TA modules is significantly associated with the pathogenicity of bacteria. Using Salmonella as a model, we investigated whether TA modules help bacteria to overcome the stress conditions encountered during colonization, thereby supporting virulence in the host. By bioinformatics analyses, we found that the genome of the pathogenic bacterium Salmonella Typhimurium encodes at least 11 type II TA modules. Several of these are conserved in other pathogenic strains but absent from non-pathogenic species indicating that certain TA modules might play a role in Salmonella pathogenicity. We show that one TA module, hereafter referred to as sehAB, plays a transient role in virulence in perorally inoculated mice. The use of a transcriptional reporter demonstrated that bacteria in which sehAB is strongly activated are predominantly localized in the mesenteric lymph nodes. In addition, sehAB was shown to be important for the survival of Salmonella in these peripheral lymphoid organs. These data indicate that the transient activation of a type II TA module can bring a selective advantage favouring virulence and demonstrate that TA modules are engaged in Salmonella pathogenesis.


Vyšlo v časopise: A Toxin-Antitoxin Module of Promotes Virulence in Mice. PLoS Pathog 9(12): e32767. doi:10.1371/journal.ppat.1003827
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003827

Souhrn

Toxin-antitoxin (TA) modules are widely prevalent in both bacteria and archaea. Originally described as stabilizing elements of plasmids, TA modules are also widespread on bacterial chromosomes. These modules promote bacterial persistence in response to specific environmental stresses. So far, the possibility that TA modules could be involved in bacterial virulence has been largely neglected, but recent comparative genomic studies have shown that the presence of TA modules is significantly associated with the pathogenicity of bacteria. Using Salmonella as a model, we investigated whether TA modules help bacteria to overcome the stress conditions encountered during colonization, thereby supporting virulence in the host. By bioinformatics analyses, we found that the genome of the pathogenic bacterium Salmonella Typhimurium encodes at least 11 type II TA modules. Several of these are conserved in other pathogenic strains but absent from non-pathogenic species indicating that certain TA modules might play a role in Salmonella pathogenicity. We show that one TA module, hereafter referred to as sehAB, plays a transient role in virulence in perorally inoculated mice. The use of a transcriptional reporter demonstrated that bacteria in which sehAB is strongly activated are predominantly localized in the mesenteric lymph nodes. In addition, sehAB was shown to be important for the survival of Salmonella in these peripheral lymphoid organs. These data indicate that the transient activation of a type II TA module can bring a selective advantage favouring virulence and demonstrate that TA modules are engaged in Salmonella pathogenesis.


Zdroje

1. GerdesK, MaisonneuveE (2012) Bacterial persistence and toxin-antitoxin Loci. Annu Rev Microbiol 66: 103–123 doi:10.1146/annurev-micro-092611-150159

2. YamaguchiY, ParkJ-H, InouyeM (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45: 61–79 doi:10.1146/annurev-genet-110410-132412

3. FineranPC, BlowerTR, FouldsIJ, HumphreysDP, LilleyKS, et al. (2009) The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci USA 106: 894–899 doi:10.1073/pnas.0808832106

4. MasudaH, TanQ, AwanoN, WuK-P, InouyeM (2012) YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Mol Microbiol 84: 979–989 doi:10.1111/j.1365-2958.2012.08068.x

5. WangX, LordDM, ChengH-Y, OsbourneDO, HongSH, et al. (2012) A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 8: 855–861 doi:10.1038/nchembio.1062

6. MakarovaKS, WolfYI, KooninEV (2009) Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 4: 19 doi:10.1186/1745-6150-4-19

7. LeplaeR, GeeraertsD, HallezR, GuglielminiJ, DrèzeP, et al. (2011) Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Research 39: 5513–5525 doi:10.1093/nar/gkr131

8. LewisK (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5: 48–56 doi:10.1038/nrmicro1557

9. PandeyDP, GerdesK (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Research 33: 966–976 doi:10.1093/nar/gki201

10. GeorgiadesK, RaoultD (2011) Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin-antitoxin modules. PLoS ONE 6: e17962 doi:10.1371/journal.pone.0017962

11. AudolyG, VincentelliR, EdouardS, GeorgiadesK, MediannikovO, et al. (2011) Effect of rickettsial toxin VapC on its eukaryotic host. PLoS ONE 6: e26528 Available: http://www.ncbi.nlm.nih.gov.gate1.inist.fr/pubmed?term=Effect%20of%20Rickettsial%20Toxin%20VapC%20on%20Its%20Eukaryotic%20Host.

12. NortonJP, MulveyMA (2012) Toxin-Antitoxin Systems Are Important for Niche-Specific Colonization and Stress Resistance of Uropathogenic Escherichia coli. PLoS Pathog 8: e1002954 doi:10.1371/journal.ppat.1002954

13. Douesnard-MaloF, DaigleF (2011) Increased persistence of Salmonella enterica serovar Typhi in the presence of Acanthamoeba castellanii. Appl Environ Microbiol 77: 7640–7646 doi:10.1128/AEM.00699-11

14. BleasdaleB, LottPJ, JagannathanA, StevensMP, BirtlesRJ, et al. (2009) The Salmonella pathogenicity island 2-encoded type III secretion system is essential for the survival of Salmonella enterica serovar Typhimurium in free-living amoebae. Appl Environ Microbiol 75: 1793–1795 doi:10.1128/AEM.02033-08

15. SevinEW, Barloy-HublerF (2007) RASTA-Bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol 8: R155 doi:10.1186/gb-2007-8-8-r155

16. JørgensenMG, PandeyDP, JaskolskaM, GerdesK (2009) HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. J Bacteriol 191: 1191–1199 doi:10.1128/JB.01013-08

17. WintherKS, GerdesK (2009) Ectopic production of VapCs from Enterobacteria inhibits translation and trans-activates YoeB mRNA interferase. Mol Microbiol 72: 918–930 doi:10.1111/j.1365-2958.2009.06694.x

18. BäumlerAJ (1997) The record of horizontal gene transfer in Salmonella. Trends Microbiol 5: 318–322 doi:10.1016/S0966-842X(97)01082-2

19. RDC T (2010) R: A Language and Environment for Statistical Computing.

20. Fivian-HughesAS, DavisEO (2010) Analyzing the regulatory role of the HigA antitoxin within Mycobacterium tuberculosis. J Bacteriol 192: 4348–4356 doi:10.1128/JB.00454-10

21. BuddePP, DavisBM, YuanJ, WaldorMK (2007) Characterization of a higBA toxin-antitoxin locus in Vibrio cholerae. J Bacteriol 189: 491–500 doi:10.1128/JB.00909-06

22. HoodRD, SinghP, HsuF, GüvenerT, CarlMA, et al. (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7: 25–37 doi:10.1016/j.chom.2009.12.007

23. AusselL, ZhaoW, HébrardM, GuilhonA-A, VialaJPM, et al. (2011) Salmonella detoxifying enzymes are sufficient to cope with the host oxidative burst. Mol Microbiol 80: 628–640 doi:10.1111/j.1365-2958.2011.07611.x

24. LinehanSA, RytkönenA, YuX-J, LiuM, HoldenDW (2005) SlyA regulates function of Salmonella pathogenicity island 2 (SPI-2) and expression of SPI-2-associated genes. Infect Immun 73: 4354–4362 doi:10.1128/IAI.73.7.4354-4362.2005

25. Hensel, SheaJE, WatermanSR, MundyR, NikolausT, et al. (1998) Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 30: 163–174.

26. SteinMA, LeungKY, ZwickM, PortilloFG-D, FinlayBB (1996) Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol Microbiol 20: 151–164 doi:10.1111/j.1365-2958.1996.tb02497.x

27. SheaJE, BeuzonCR, GleesonC, MundyR, HoldenDW (1999) Influence of the Salmonella typhimurium pathogenicity island 2 type III secretion system on bacterial growth in the mouse. Infect Immun 67: 213–219.

28. HenryT, CouillaultC, RockenfellerP, BoucrotE, DumontA, et al. (2006) The Salmonella effector protein PipB2 is a linker for kinesin-1. Proc Natl Acad Sci USA 103: 13497–13502 doi:10.1073/pnas.0605443103

29. BeuzónCR, UnsworthKE, HoldenDW (2001) In vivo genetic analysis indicates that PhoP-PhoQ and the Salmonella pathogenicity island 2 type III secretion system contribute independently to Salmonella enterica serovar Typhimurium virulence. Infect Immun 69: 7254–7261 doi:10.1128/IAI.69.12.7254-7261.2001

30. BeuzónCR, HoldenDW (2001) Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo. Microbes Infect 3: 1345–1352.

31. RubyT, McLaughlinL, GopinathS, MonackD (2012) Salmonella's long-term relationship with its host. FEMS Microbiol Rev 36: 600–615 doi:10.1111/j.1574-6976.2012.00332.x

32. MonackDM, BouleyDM, FalkowS (2004) Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J Exp Med 199: 231–241 doi:10.1084/jem.20031319

33. CarterPB, CollinsFM (1974) The route of enteric infection in normal mice. J Exp Med 139: 1189–1203.

34. ErikssonS, LucchiniS, ThompsonA, RhenM, HintonJCD (2003) Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47: 103–118.

35. SlatteryA, VictorsenAH, BrownA, HillmanK, PhillipsGJ (2013) Isolation of highly persistent mutants of Salmonella enterica serovar typhimurium reveals a new toxin-antitoxin module. J Bacteriol 195: 647–657 doi:10.1128/JB.01397-12

36. KooninEV, WolfYI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Research 36: 6688–6719 doi:10.1093/nar/gkn668

37. GalánJE, CurtissR (1989) Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA 86: 6383–6387.

38. JonesBD, GhoriN, FalkowS (1994) Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 180: 15–23.

39. LelouardH, HenriS, de BovisB, MugnierB, Chollat-NamyA, et al. (2010) Pathogenic bacteria and dead cells are internalized by a unique subset of Peyer's patch dendritic cells that express lysozyme. Gastroenterology 138: 173–84.e1–3 doi:10.1053/j.gastro.2009.09.051

40. Christensen-DalsgaardM, JørgensenMG, GerdesK (2010) Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol Microbiol 75: 333–348 doi:10.1111/j.1365-2958.2009.06969.x

41. ChaudhuriRR, PetersSE, PleasanceSJ, NorthenH, WillersC, et al. (2009) Comprehensive identification of Salmonella enterica serovar typhimurium genes required for infection of BALB/c mice. PLoS Pathog 5: e1000529 doi:10.1371/journal.ppat.1000529

42. MatéMJ, VincentelliR, FoosN, RaoultD, CambillauC, et al. (2011) Crystal structure of the DNA-bound VapBC2 antitoxin/toxin pair from Rickettsia felis. Nucleic Acids Research doi:10.1093/nar/gkr1167

43. BrownBL, GrigoriuS, KimY, ArrudaJM, DavenportA, et al. (2009) Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathog 5: e1000706 doi:10.1371/journal.ppat.1000706

44. NiedergangF, SirardJC, BlancCT, KraehenbuhlJP (2000) Entry and survival of Salmonella typhimurium in dendritic cells and presentation of recombinant antigens do not require macrophage-specific virulence factors. Proc Natl Acad Sci USA 97: 14650–14655 doi:10.1073/pnas.97.26.14650

45. RamageHR, ConnollyLE, CoxJS (2009) Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5: e1000767 doi:10.1371/journal.pgen.1000767

46. DatsenkoKA, WannerBL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6645 doi:10.1073/pnas.120163297

47. ValdiviaRH, FalkowS (1996) Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol 22: 367–378.

48. MayerMP (1995) A new set of useful cloning and expression vectors derived from pBlueScript. Gene 163: 41–46.

49. De la CruzMA, Fernández-MoraM, GuadarramaC, Flores-ValdezMA, BustamanteVH, et al. (2007) LeuO antagonizes H-NS and StpA-dependent repression in Salmonella enterica ompS1. Mol Microbiol 66: 727–743 doi:10.1111/j.1365-2958.2007.05958.x

50. SchroederN, HenryT, de ChastellierC, ZhaoW, GuilhonA-A, et al. (2010) The virulence protein SopD2 regulates membrane dynamics of Salmonella-containing vacuoles. PLoS Pathog 6: e1001002 doi:10.1371/journal.ppat.1001002

51. GotfredsenM, GerdesK (1998) The Escherichia coli relBE genes belong to a new toxin-antitoxin gene family. Mol Microbiol 29: 1065–1076.

52. AizenmanE, Engelberg-KulkaH, GlaserG (1996) An Escherichia coli chromosomal “addiction module” regulated by guanosine [corrected] 3″,5-″bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci USA 93: 6059–6063.

53. MotiejūnaitėR, ArmalytėJ, MarkuckasA, SužiedėlienėE (2007) Escherichia coli dinJ-yafQ genes act as a toxin-antitoxin module. FEMS Microbiol Lett 268: 112–119 doi:10.1111/j.1574-6968.2006.00563.x

54. HazanR, SatB, RechesM, Engelberg-KulkaH (2001) Postsegregational killing mediated by the P1 phage “addiction module” phd-doc requires the Escherichia coli programmed cell death system mazEF. J Bacteriol 183: 2046–2050 doi:10.1128/JB.183.6.2046-2050.2001

55. Christensen-DalsgaardM, GerdesK (2006) Two higBA loci in the Vibrio cholerae superintegron encode mRNA cleaving enzymes and can stabilize plasmids. Mol Microbiol 62: 397–411 doi:10.1111/j.1365-2958.2006.05385.x

56. AfifH, AllaliN, CouturierM, Van MelderenL (2001) The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Mol Microbiol 41: 73–82.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2013 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa