#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Human Cytomegalovirus Infection Dysregulates the Canonical Wnt/β-catenin Signaling Pathway


Human Cytomegalovirus (HCMV) is a ubiquitous herpesvirus that currently infects a large percentage of the world population. Although usually asymptomatic in healthy individuals, HCMV infection during pregnancy may cause spontaneous abortions, premature delivery, or permanent neurological disabilities in infants infected in utero. During infection, the virus exerts control over a multitude of host signaling pathways. Wnt/β-catenin signaling, an essential pathway involved in cell cycle control, differentiation, embryonic development, placentation and metastasis, is frequently dysregulated by viruses. How HCMV infection affects this critical pathway is not currently known. In this study, we demonstrate that HCMV dysregulates Wnt/β-catenin signaling in dermal fibroblasts and human placental extravillous trophoblasts. Infection inhibits Wnt-induced transcriptional activity of β-catenin and expression of β-catenin target genes in these cells. HCMV infection leads to β-catenin protein accumulation in a discrete juxtanuclear region. Levels of β-catenin in membrane-associated and cytosolic pools, as well as nuclear β-catenin, are reduced after infection; while transcription of the β-catenin gene is unchanged, suggesting enhanced degradation. Given the critical role of Wnt/β-catenin signaling in cellular processes, these findings represent a novel and important mechanism whereby HCMV disrupts normal cellular function.


Vyšlo v časopise: Human Cytomegalovirus Infection Dysregulates the Canonical Wnt/β-catenin Signaling Pathway. PLoS Pathog 8(10): e32767. doi:10.1371/journal.ppat.1002959
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002959

Souhrn

Human Cytomegalovirus (HCMV) is a ubiquitous herpesvirus that currently infects a large percentage of the world population. Although usually asymptomatic in healthy individuals, HCMV infection during pregnancy may cause spontaneous abortions, premature delivery, or permanent neurological disabilities in infants infected in utero. During infection, the virus exerts control over a multitude of host signaling pathways. Wnt/β-catenin signaling, an essential pathway involved in cell cycle control, differentiation, embryonic development, placentation and metastasis, is frequently dysregulated by viruses. How HCMV infection affects this critical pathway is not currently known. In this study, we demonstrate that HCMV dysregulates Wnt/β-catenin signaling in dermal fibroblasts and human placental extravillous trophoblasts. Infection inhibits Wnt-induced transcriptional activity of β-catenin and expression of β-catenin target genes in these cells. HCMV infection leads to β-catenin protein accumulation in a discrete juxtanuclear region. Levels of β-catenin in membrane-associated and cytosolic pools, as well as nuclear β-catenin, are reduced after infection; while transcription of the β-catenin gene is unchanged, suggesting enhanced degradation. Given the critical role of Wnt/β-catenin signaling in cellular processes, these findings represent a novel and important mechanism whereby HCMV disrupts normal cellular function.


Zdroje

1. SteiningerC (2007) Clinical relevance of cytomegalovirus infection in patients with disorders of the immune system. Clin Microbiol Infect 13: 953–963.

2. CannonMJ (2009) Congenital cytomegalovirus (CMV) epidemiology and awareness. J Clin Virol 46 (Suppl 4) S6–10.

3. TrincadoDE, RawlinsonWD (2001) Congenital and perinatal infections with cytomegalovirus. J Paediatr Child Health 37: 187–192.

4. DemmlerGJ (1996) Congenital cytomegalovirus infection and disease. Adv Pediatr Infect Dis 11: 135–162.

5. NigroG, AdlerSP (2011) Cytomegalovirus infections during pregnancy. Curr Opin Obstet Gynecol 23: 123–128.

6. PassRF, FowlerKB, BoppanaSB, BrittWJ, StagnoS (2006) Congenital cytomegalovirus infection following first trimester maternal infection: symptoms at birth and outcome. J Clin Virol 35: 216–220.

7. StreblowDN, OrloffSL, NelsonJA (2007) Acceleration of allograft failure by cytomegalovirus. Curr Opin Immunol 19: 577–582.

8. ChengJ, KeQ, JinZ, WangH, KocherO, et al. (2009) Cytomegalovirus infection causes an increase of arterial blood pressure. PLoS Pathog 5: e1000427.

9. JaultFM, JaultJM, RuchtiF, FortunatoEA, ClarkC, et al. (1995) Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb, and p53, leading to cell cycle arrest. J Virol 69: 6697–6704.

10. BresnahanWA, BoldoghI, ThompsonEA, AlbrechtT (1996) Human cytomegalovirus inhibits cellular DNA synthesis and arrests productively infected cells in late G1. Virology 224: 150–160.

11. DittmerD, MocarskiES (1997) Human cytomegalovirus infection inhibits G1/S transition. J Virol 71: 1629–1634.

12. LuM, ShenkT (1996) Human cytomegalovirus infection inhibits cell cycle progression at multiple points, including the transition from G1 to S. J Virol 70: 8850–8857.

13. JacksonSE, MasonGM, WillsMR (2011) Human cytomegalovirus immunity and immune evasion. Virus Res 157: 151–160.

14. HaywardSD, LiuJ, FujimuroM (2006) Notch and Wnt signaling: mimicry and manipulation by gamma herpesviruses. Sci STKE 2006: re4.

15. CadiganKM, NusseR (1997) Wnt signaling: a common theme in animal development. Genes Dev 11: 3286–3305.

16. MunjiRN, ChoeY, LiG, SiegenthalerJA, PleasureSJ (2011) Wnt signaling regulates neuronal differentiation of cortical intermediate progenitors. J Neurosci 31: 1676–1687.

17. SlawnyNA, O'SheaKS (2011) Dynamic changes in Wnt signaling are required for neuronal differentiation of mouse embryonic stem cells. Mol Cell Neurosci 48: 205–216.

18. MaruyamaT, MirandoAJ, DengCX, HsuW (2010) The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development. Sci Signal 3: ra40.

19. PollheimerJ, LoreggerT, SondereggerS, SalehL, BauerS, et al. (2006) Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast. Am J Pathol 168: 1134–1147.

20. MasckauchanTN, ShawberCJ, FunahashiY, LiCM, KitajewskiJ (2005) Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis 8: 43–51.

21. NusseR, FuererC, ChingW, HarnishK, LoganC, et al. (2008) Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol 73: 59–66.

22. QinX, ZhangH, ZhouX, WangC, ZhangX, et al. (2007) Proliferation and migration mediated by Dkk-1/Wnt/beta-catenin cascade in a model of hepatocellular carcinoma cells. Transl Res 150: 281–294.

23. BarkerN, CleversH (2000) Catenins, Wnt signaling and cancer. Bioessays 22: 961–965.

24. MoonRT, KohnAD, De FerrariGV, KaykasA (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5: 691–701.

25. AkiyamaT (2000) Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 11: 273–282.

26. HeTC, SparksAB, RagoC, HermekingH, ZawelL, et al. (1998) Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512.

27. TetsuO, McCormickF (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422–426.

28. WuB, CramptonSP, HughesCC (2007) Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 26: 227–239.

29. StambolicV, RuelL, WoodgettJR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6: 1664–1668.

30. NiidaA, HirokoT, KasaiM, FurukawaY, NakamuraY, et al. (2004) DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene 23: 8520–8526.

31. JohnstonJA, WardCL, KopitoRR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143: 1883–1898.

32. TranK, MahrJA, SpectorDH (2010) Proteasome subunits relocalize during human cytomegalovirus infection, and proteasome activity is necessary for efficient viral gene transcription. J Virol 84: 3079–3093.

33. HoleK, Van DammeP, DalvaM, AksnesH, GlomnesN, et al. (2011) The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PLoS One 6: e24713.

34. CorstenMF, HofstraL, NarulaJ, ReutelingspergerCP (2006) Counting heads in the war against cancer: defining the role of annexin A5 imaging in cancer treatment and surveillance. Cancer Res 66: 1255–1260.

35. ChuI, SunJ, ArnaoutA, KahnH, HannaW, et al. (2007) p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell 128: 281–294.

36. AberleH, BauerA, StappertJ, KispertA, KemlerR (1997) beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J 16: 3797–3804.

37. BandapalliOR, DihlmannS, HelwaR, Macher-GoeppingerS, WeitzJ, et al. (2009) Transcriptional activation of the beta-catenin gene at the invasion front of colorectal liver metastases. J Pathol 218: 370–379.

38. LaMarcaHL, NelsonAB, ScandurroAB, WhitleyGS, MorrisCA (2006) Human cytomegalovirus-induced inhibition of cytotrophoblast invasion in a first trimester extravillous cytotrophoblast cell line. Placenta 27: 137–147.

39. BrabletzT, JungA, DagS, HlubekF, KirchnerT (1999) beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155: 1033–1038.

40. WillertK, JonesKA (2006) Wnt signaling: is the party in the nucleus? Genes Dev 20: 1394–1404.

41. GhanevatiM, MillerCA (2005) Phospho-beta-catenin accumulation in Alzheimer's disease and in aggresomes attributable to proteasome dysfunction. J Mol Neurosci 25: 79–94.

42. SukhdeoK, ManiM, HideshimaT, TakadaK, Pena-CruzV, et al. (2011) beta-catenin is dynamically stored and cleared in multiple myeloma by the proteasome-aggresome-autophagosome-lysosome pathway. Leukemia 26: 116–9.

43. KaspariM, TavalaiN, StammingerT, ZimmermannA, SchilfR, et al. (2008) Proteasome inhibitor MG132 blocks viral DNA replication and assembly of human cytomegalovirus. FEBS Lett 582: 666–672.

44. SadanariH, TanakaJ, LiZ, YamadaR, MatsubaraK, et al. (2009) Proteasome inhibitor differentially regulates expression of the major immediate early genes of human cytomegalovirus in human central nervous system-derived cell lines. Virus Res 142: 68–77.

45. BenceNF, SampatRM, KopitoRR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292: 1552–1555.

46. BrowneEP, ShenkT (2003) Human cytomegalovirus UL83-coded pp65 virion protein inhibits antiviral gene expression in infected cells. Proc Natl Acad Sci U S A 100: 11439–11444.

47. YurochkoAD, HwangES, RasmussenL, KeayS, PereiraL, et al. (1997) The human cytomegalovirus UL55 (gB) and UL75 (gH) glycoprotein ligands initiate the rapid activation of Sp1 and NF-kappaB during infection. J Virol 71: 5051–5059.

48. HwangJ, KalejtaRF (2007) Proteasome-dependent, ubiquitin-independent degradation of Daxx by the viral pp71 protein in human cytomegalovirus-infected cells. Virology 367: 334–338.

49. KalejtaRF, BechtelJT, ShenkT (2003) Human cytomegalovirus pp71 stimulates cell cycle progression by inducing the proteasome-dependent degradation of the retinoblastoma family of tumor suppressors. Mol Cell Biol 23: 1885–1895.

50. KalejtaRF, ShenkT (2003) Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc Natl Acad Sci U S A 100: 3263–3268.

51. ArcangelettiMC, PinardiF, MediciMC, PilottiE, De ContoF, et al. (2000) Cytoskeleton involvement during human cytomegalovirus replicative cycle in human embryo fibroblasts. New Microbiol 23: 241–256.

52. FujimuroM, WuFY, ApRhysC, KajumbulaH, YoungDB, et al. (2003) A novel viral mechanism for dysregulation of beta-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nat Med 9: 300–306.

53. MorrisonJA, KlingelhutzAJ, Raab-TraubN (2003) Epstein-Barr virus latent membrane protein 2A activates beta-catenin signaling in epithelial cells. J Virol 77: 12276–12284.

54. KikuchiA, YamamotoH, SatoA (2009) Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol 19: 119–129.

55. CrossJC, WerbZ, FisherSJ (1994) Implantation and the placenta: key pieces of the development puzzle. Science 266: 1508–1518.

56. DamskyCH, FisherSJ (1998) Trophoblast pseudo-vasculogenesis: faking it with endothelial adhesion receptors. Curr Opin Cell Biol 10: 660–666.

57. ZhouY, FisherSJ, JanatpourM, GenbacevO, DejanaE, et al. (1997) Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest 99: 2139–2151.

58. TabataT, McDonaghS, KawakatsuH, PereiraL (2007) Cytotrophoblasts infected with a pathogenic human cytomegalovirus strain dysregulate cell-matrix and cell-cell adhesion molecules: a quantitative analysis. Placenta 28: 527–537.

59. TaoL, SuhuaC, JuanjuanC, ZongzhiY, JuanX, et al. (2011) In vitro study on human cytomegalovirus affecting early pregnancy villous EVT's invasion function. Virol J 8: 114.

60. Yamamoto-TabataT, McDonaghS, ChangHT, FisherS, PereiraL (2004) Human cytomegalovirus interleukin-10 downregulates metalloproteinase activity and impairs endothelial cell migration and placental cytotrophoblast invasiveness in vitro. J Virol 78: 2831–2840.

61. DamskyCH, LibrachC, LimKH, FitzgeraldML, McMasterMT, et al. (1994) Integrin switching regulates normal trophoblast invasion. Development 120: 3657–3666.

62. SondereggerS, HaslingerP, SabriA, LeisserC, OttenJV, et al. (2010) Wingless (Wnt)-3A induces trophoblast migration and matrix metalloproteinase-2 secretion through canonical Wnt signaling and protein kinase B/AKT activation. Endocrinology 151: 211–220.

63. SondereggerS, PollheimerJ, KnoflerM (2010) Wnt signalling in implantation, decidualisation and placental differentiation–review. Placenta 31: 839–847.

64. SondereggerS, HussleinH, LeisserC, KnoflerM (2007) Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta 28 (Suppl A) S97–102.

65. ShiverickKT, KingA, FrankH, WhitleyGS, CartwrightJE, et al. (2001) Cell culture models of human trophoblast II: trophoblast cell lines–a workshop report. Placenta 22 (Suppl A) S104–106.

66. RauwelB, MariameB, MartinH, NielsenR, AllartS, et al. (2010) Activation of peroxisome proliferator-activated receptor gamma by human cytomegalovirus for de novo replication impairs migration and invasiveness of cytotrophoblasts from early placentas. J Virol 84: 2946–2954.

67. LiuJ, WangH, ZuoY, FarmerSR (2006) Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin. Mol Cell Biol 26: 5827–5837.

68. PollheimerJ, KnoflerM (2005) Signalling pathways regulating the invasive differentiation of human trophoblasts: a review. Placenta 26 (Suppl A) S21–30.

69. TianX, LiuZ, NiuB, ZhangJ, TanTK, et al. (2011) E-cadherin/beta-catenin complex and the epithelial barrier. J Biomed Biotechnol 2011: 567305.

70. ChoyMY, ManyondaIT (1998) The phagocytic activity of human first trimester extravillous trophoblast. Hum Reprod 13: 2941–2949.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2012 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#