#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Fatty Acid Oxidation Is Essential for Egg Production by the Parasitic Flatworm


Schistosomes, parasitic flatworms that cause the neglected tropical disease schistosomiasis, have been considered to have an entirely carbohydrate based metabolism, with glycolysis playing a dominant role in the adult parasites. However, we have discovered a close link between mitochondrial oxygen consumption by female schistosomes and their ability to produce eggs. We show that oxygen consumption rates (OCR) and egg production are significantly diminished by pharmacologic inhibition of carnitine palmitoyl transferase 1 (CPT1), which catalyzes a rate limiting step in fatty acid β-oxidation (FAO) and by genetic loss of function of acyl CoA synthetase, which complexes with CPT1 and activates long chain FA for use in FAO, and of acyl CoA dehydrogenase, which catalyzes the first step in FAO within mitochondria. Declines in OCR and egg production correlate with changes in a network of lipid droplets within cells in a specialized reproductive organ, the vitellarium. Our data point to the importance of regulated lipid stores and FAO for the compartmentalized process of egg production in schistosomes.


Vyšlo v časopise: Fatty Acid Oxidation Is Essential for Egg Production by the Parasitic Flatworm. PLoS Pathog 8(10): e32767. doi:10.1371/journal.ppat.1002996
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002996

Souhrn

Schistosomes, parasitic flatworms that cause the neglected tropical disease schistosomiasis, have been considered to have an entirely carbohydrate based metabolism, with glycolysis playing a dominant role in the adult parasites. However, we have discovered a close link between mitochondrial oxygen consumption by female schistosomes and their ability to produce eggs. We show that oxygen consumption rates (OCR) and egg production are significantly diminished by pharmacologic inhibition of carnitine palmitoyl transferase 1 (CPT1), which catalyzes a rate limiting step in fatty acid β-oxidation (FAO) and by genetic loss of function of acyl CoA synthetase, which complexes with CPT1 and activates long chain FA for use in FAO, and of acyl CoA dehydrogenase, which catalyzes the first step in FAO within mitochondria. Declines in OCR and egg production correlate with changes in a network of lipid droplets within cells in a specialized reproductive organ, the vitellarium. Our data point to the importance of regulated lipid stores and FAO for the compartmentalized process of egg production in schistosomes.


Zdroje

1. ChitsuloL, LoverdeP, EngelsD (2004) Schistosomiasis. Nat Rev Microbiol 2: 12–13.

2. KingCH, Dangerfield-ChaM (2008) The unacknowledged impact of chronic schistosomiasis. Chronic Illn 4: 65–79.

3. PearceEJ, MacDonaldAS (2002) The immunobiology of schistosomiasis. Nat Rev Immunol 2: 499–511.

4. LoVerdePT (2002) Presidential address. Sex and schistosomes: an interesting biological interplay with control implications. J Parasitol 88: 3–13.

5. BaschPF, BaschN (1984) Intergeneric reproductive stimulation and parthenogenesis in Schistosoma mansoni. Parasitology 89 (Pt 2): 369–376.

6. ArmstrongJC (1965) Mating Behavior and Development of Schistosomes in the Mouse. J Parasitol 51: 605–616.

7. MichaelsRM (1969) Mating of Schistosoma mansoni in vitro. Exp Parasitol 25: 58–71.

8. ShawMK (1987) Schistosoma mansoni: vitelline gland development in females from single sex infections. J Helminthol 61: 253–259.

9. ErasmusDA, PopielI, ShawJR (1982) A comparative study of the vitelline cell in Schistosoma mansoni, S. haematobium, S. japonicum and S. mattheei. Parasitology 84: 283–287.

10. PopielI, CioliD, ErasmusDA (1984) The morphology and reproductive status of female Schistosoma mansoni following separation from male worms. Int J Parasitol 14: 183–190.

11. KunzW (2001) Schistosome male-female interaction: induction of germ-cell differentiation. Trends Parasitol 17: 227–231.

12. GreveldingCG (2004) Schistosoma. Curr Biol 14: R545.

13. ErasmusDA (1973) A comparative study of the reproductive system of mature, immature and “unisexual” female Schistosoma mansoni. Parasitology 67: 165–183.

14. PopielI, BaschPF (1984) Reproductive development of female Schistosoma mansoni (Digenea: Schistosomatidae) following bisexual pairing of worms and worm segments. J Exp Zool 232: 141–150.

15. GuptaBC, BaschPF (1987) The role of Schistosoma mansoni males in feeding and development of female worms. J Parasitol 73: 481–486.

16. PellettieriJ, FitzgeraldP, WatanabeS, MancusoJ, GreenDR, et al. (2010) Cell death and tissue remodeling in planarian regeneration. Dev Biol 338: 76–85.

17. SchillerEL, BuedingE, TurnerVM, FisherJ (1975) Aerobic and anaerobic carbohydrate metabolism and egg production of Schistosoma mansoni in vitro. J Parasitol 61: 385–389.

18. BarrettJ (2009) Forty years of helminth biochemistry. Parasitology 136: 1633–1642.

19. van OordtBE, van den HeuvelJM, TielensAG, van den BerghSG (1985) The energy production of the adult Schistosoma mansoni is for a large part aerobic. Mol Biochem Parasitol 16: 117–126.

20. Van OordtBE, TielensAG, Van den BerghSG (1989) Aerobic to anaerobic transition in the carbohydrate metabolism of Schistosoma mansoni cercariae during transformation in vitro. Parasitology 98 Pt 3: 409–415.

21. GalantiSE, HuangC-CS, PearceEJ (2012) Cell death and reproductive regression in female Schistosoma mansoni. PLoS Negl Trop Dis 6: e1509.

22. BerrimanM, HaasBJ, LoVerdePT, WilsonRA, DillonGP, et al. (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460: 352–358.

23. BrouwersJF, SmeenkIM, van GoldeLM, TielensAG (1997) The incorporation, modification and turnover of fatty acids in adult Schistosoma mansoni. Mol Biochem Parasitol 88: 175–185.

24. NewportGR, WellerTH (1982) Deposition and maturation of eggs of Schistosoma mansoni in vitro: importance of fatty acids in serum-free media. Am J Trop Med Hyg 31: 349–357.

25. NichollsDG, Darley-UsmarVM, WuM, JensenPB, RogersGW, et al. (2010) Bioenergetic profile experiment using C2C12 myoblast cells. J Vis Exp 6: pii:2511.

26. BrandMD, NichollsDG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435: 297–312.

27. van der WindtGJ, EvertsB, ChangCH, CurtisJD, FreitasTC, et al. (2011) Mitochondrial respiratory capacity is a critical regulator of CD8(+) T cell memory development. Immunity 36: 68–78.

28. RamsayRR, ZammitVA (2004) Carnitine acyltransferases and their influence on CoA pools in health and disease. Mol Aspects Med 25: 475–493.

29. TutwilerGF, KirschT, MohrbacherRJ, HoW (1978) Pharmacologic profile of methyl 2-tetradecylglycidate (McN-3716)–an orally effective hypoglycemic agent. Metabolism 27: 1539–1556.

30. KiorpesTC, HoerrD, HoW, WeanerLE, InmanMG, et al. (1984) Identification of 2-tetradecylglycidyl coenzyme A as the active form of methyl 2-tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site-directed inhibitor of carnitine palmitoyltransferase A in isolated rat liver mitochondria. J Biol Chem 259: 9750–9755.

31. GuoY, CordesKR, FareseRVJr, WaltherTC (2009) Lipid droplets at a glance. J Cell Sci 122: 749–752.

32. O'RourkeEJ, SoukasAA, CarrCE, RuvkunG (2009) C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab 10: 430–435.

33. BhuiyanJ, PritchardPH, PandeSV, SeccombeDW (1995) Effects of high-fat diet and fasting on levels of acyl-coenzyme A binding protein in liver, kidney, and heart of rat. Metabolism 44: 1185–1189.

34. LeeK, KernerJ, HoppelCL (2011) Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J Biol Chem 286: 25655–25662.

35. TomodaH, OmuraS (1993) Lipid metabolism inhibitors of microbial origin. Kitasato Arch Exp Med 65 Suppl: 1–12.

36. KimJH, LewinTM, ColemanRA (2001) Expression and characterization of recombinant rat Acyl-CoA synthetases 1, 4, and 5. Selective inhibition by triacsin C and thiazolidinediones. J Biol Chem 276: 24667–24673.

37. BhardwajR, Krautz-PetersonG, SkellyPJ (2011) Using RNA interference in Schistosoma mansoni. Methods Mol Biol 764: 223–239.

38. RumjanekFD, SimpsonAJ (1980) The incorporation and utilization of radiolabelled lipids by adult Schistosoma mansoni in vitro. Mol Biochem Parasitol 1: 31–44.

39. JiangJ, SkellyPJ, ShoemakerCB, CaulfieldJP (1996) Schistosoma mansoni: the glucose transport protein SGTP4 is present in tegumental multilamellar bodies, discoid bodies, and the surface lipid bilayers. Exp Parasitol 82: 201–210.

40. Krautz-PetersonG, SimoesM, FaghiriZ, NdegwaD, OliveiraG, et al. (2010) Suppressing glucose transporter gene expression in schistosomes impairs parasite feeding and decreases survival in the mammalian host. PLoS Pathog 6: e1000932.

41. WangY, HolmesE, NicholsonJK, CloarecO, CholletJ, et al. (2004) Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proc Natl Acad Sci U S A 101: 12676–12681.

42. BalogCI, MeissnerA, GoralerS, BladergroenMR, VennervaldBJ, et al. (2011) Metabonomic investigation of human Schistosoma mansoni infection. Mol Biosyst 7: 1473–1480.

43. SturmeyRG, ReisA, LeeseHJ, McEvoyTG (2009) Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim 44 Suppl 3: 50–58.

44. ArreseEL, SoulagesJL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55: 207–225.

45. MannVH, MoralesME, RinaldiG, BrindleyPJ (2010) Culture for genetic manipulation of developmental stages of Schistosoma mansoni. Parasitology 137: 451–462.

46. CorrentiJM, JungE, FreitasTC, PearceEJ (2007) Transfection fo Schistosoma mansoni by electroporation and the description of a new promoter sequence for transgene expression. Int J Parasitol 37: 1107.

47. CollinsJJ3rd, KingRS, CogswellA, WilliamsDL, NewmarkPA (2011) An atlas for Schistosoma mansoni organs and life-cycle stages using cell type-specific markers and confocal microscopy. PLoS Negl Trop Dis 5: e1009.

48. ChoiHY, LeeJE, LeeJW, ParkHJ, JungJH (2011) In Vitro Study of Antiadipogenic Profile of Latanoprost, Travoprost, Bimatoprost, and Tafluprost in Human Orbital Preadiopocytes. J Ocul Pharmacol Ther 28: 146–52.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2012 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#