#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Communal Bacterial Adhesin Anchors Biofilm and Bystander Cells to Surfaces


While the exopolysaccharide component of the biofilm matrix has been intensively studied, much less is known about matrix-associated proteins. To better understand the role of these proteins, we undertook a proteomic analysis of the V. cholerae biofilm matrix. Here we show that the two matrix-associated proteins, Bap1 and RbmA, perform distinct roles in the biofilm matrix. RbmA strengthens intercellular attachments. In contrast, Bap1 is concentrated on surfaces where it serves to anchor the biofilm and recruit cells not yet committed to the sessile lifestyle. This is the first example of a biofilm-derived, communally synthesized conditioning film that stabilizes the association of multilayer biofilms with a surface and facilitates recruitment of planktonic bystanders to the substratum. These studies define a novel paradigm for spatial and functional differentiation of proteins in the biofilm matrix and provide evidence for bacterial cooperation in maintenance and expansion of the multilayer biofilm.


Vyšlo v časopise: A Communal Bacterial Adhesin Anchors Biofilm and Bystander Cells to Surfaces. PLoS Pathog 7(8): e32767. doi:10.1371/journal.ppat.1002210
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002210

Souhrn

While the exopolysaccharide component of the biofilm matrix has been intensively studied, much less is known about matrix-associated proteins. To better understand the role of these proteins, we undertook a proteomic analysis of the V. cholerae biofilm matrix. Here we show that the two matrix-associated proteins, Bap1 and RbmA, perform distinct roles in the biofilm matrix. RbmA strengthens intercellular attachments. In contrast, Bap1 is concentrated on surfaces where it serves to anchor the biofilm and recruit cells not yet committed to the sessile lifestyle. This is the first example of a biofilm-derived, communally synthesized conditioning film that stabilizes the association of multilayer biofilms with a surface and facilitates recruitment of planktonic bystanders to the substratum. These studies define a novel paradigm for spatial and functional differentiation of proteins in the biofilm matrix and provide evidence for bacterial cooperation in maintenance and expansion of the multilayer biofilm.


Zdroje

1. KaratanEWatnickP 2009 Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73 310 347

2. MoorthySWatnickPI 2004 Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development. Mol Microbiol 52 573 587

3. MoorthySWatnickPI 2005 Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Mol Microbiol 57 1623 1635

4. FlemmingHCWingenderJ The biofilm matrix. Nat Rev Microbiol 8 623 633

5. KierekKWatnickPI 2003 Environmental Determinants of Vibrio cholerae Biofilm Development. Appl Environ Microbiol 69 5079 5088

6. KierekKWatnickPI 2003 The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water. Proc Natl Acad Sci U S A: 100 14357 14362

7. WatnickPIKolterR 1999 Steps in the development of a Vibrio cholerae biofilm. Mol Microbiol 34 586 595

8. YildizFH Schoolnik GK 1999 Vibrio cholerae O1 El Tor: Identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA 96 4028 4033

9. YildizFHDolganovNASchoolnikGK 2001 VpsR, a Member of the Response Regulators of the Two-Component Regulatory Systems, Is Required for Expression of vps Biosynthesis Genes and EPS(ETr)-Associated Phenotypes in Vibrio cholerae O1 El Tor. J Bacteriol 183 1716 1726

10. Casper-LindleyCYildizFH 2004 VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J Bacteriol 186 1574 1578

11. YildizFH 2008 Cyclic dimeric GMP signaling and regulation of surface-associated developmental programs. J Bacteriol 190 781 783

12. HaugoAJWatnickPI 2002 Vibrio cholerae CytR is a repressor of biofilm development. Mol Microbiol 45 471 483

13. HouotLChangSPickeringBSAbsalonCWatnickPI 2010 The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J Bacteriol 192 3055 3067

14. HammerBKBasslerBL 2003 Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50 101 104

15. SilvaAJBenitezJA 2006 A Vibrio cholerae relaxed (relA) mutant expresses major virulence factors, exhibits biofilm formation and motility, and colonizes the suckling mouse intestine. J Bacteriol 188 794 800

16. LimBBeyhanSYildizFH 2007 Regulation of Vibrio polysaccharide synthesis and virulence factor production by CdgC, a GGDEF-EAL domain protein, in Vibrio cholerae. J Bacteriol 189 717 729

17. TamayoRTischlerADCamilliA 2005 The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J Biol Chem 280 33324 33330

18. TischlerADCamilliA 2005 Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 73 5873 5882

19. LaurianoCMGhoshCCorreaNEKloseKE 2004 The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae. J Bacteriol 186 4864 4874

20. WatnickPILaurianoCMKloseKECroalLKolterR 2001 Absence of a flagellum leads to altered colony morphology, biofilm development, and virulence in Vibrio cholerae O139. Mol Microbiol 39 223 235

21. HuoAXuBChowdhuryMAIslamMSMontillaR 1996 A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries. Appl Environ Microbiol 62 2508 2512

22. ColwellRRHuqAIslamMSAzizKMYunusM 2003 Reduction of cholera in Bangladeshi villages by simple filtration. Proc Natl Acad Sci U S A 100 1051 1055

23. ColwellRRHuqA 1994 Environmental reservoir of Vibrio cholerae. The causative agent of cholera. Ann N Y Acad Sci 740 44 54

24. HuqASmallEBWestPAHuqMIRahmanR 1983 Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45 275 283

25. HuqAHuqSAGrimesDJO'BrienMChuKH 1986 Colonization of the gut of the blue crab (Callinectes sapidus) by Vibrio cholerae. Appl Environ Microbiol 52 586 588

26. TamplinMLGauzensALHuqASackDAColwellRR 1990 Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microbiol 56 1977 1980

27. ShuklaBNSinghDVSanyalSC 1995 Attachment of non-culturable toxigenic Vibrio cholerae O1 and non-O1 and Aeromonas spp. to the aquatic arthropod Gerris spinolae and plants in the River Ganga, Varanasi. FEMS Immunol Med Microbiol 12 113 120

28. MeibomKLLiXBNielsenATWuCYRosemanS 2004 The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci U S A 101 2524 2529

29. LiXRosemanS 2004 The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci U S A 101 627 631

30. KeyhaniNORosemanS 1999 Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta 1473 108 122

31. MeibomKLBlokeschMDolganovNAWuCYSchoolnikGK 2005 Chitin induces natural competence in Vibrio cholerae. Science 310 1824 1827

32. MuellerRSBeyhanSSainiSGYildizFHBartlettDH 2009 Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J Bacteriol 191 3504 3516

33. KaratanEDuncanTRWatnickPI 2005 NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J Bacteriol 187 7434 7443

34. HouotLWatnickPI 2008 A novel role for enzyme I of the Vibrio cholerae phosphoenolpyruvate phosphotransferase system in regulation of growth in a biofilm. J Bacteriol 190 311 320

35. McGinnisMWParkerZMWalterNERutkovskyACCartaya-MarinC 2009 Spermidine regulates Vibrio cholerae biofilm formation via transport and signaling pathways. FEMS Microbiol Lett 299 166 174

36. BergTSchildSReidlJ 2007 Regulation of the chitobiose-phosphotransferase system in Vibrio cholerae. Arch Microbiol 187 433 439

37. HouotLChangSAbsalonCWatnickPI 2010 Vibrio cholerae PTS control of carbohydrate transport, biofilm formation, and colonization of the germ-free mouse intestine. Infect Immun 78 1482 1494

38. FongJCKarplusKSchoolnikGKYildizFH 2006 Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J Bacteriol 188 1049 1059

39. FongJCYildizFH 2007 The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J Bacteriol 189 2319 2330

40. HungDTZhuJSturtevantDMekalanosJJ 2006 Bile acids stimulate biofilm formation in Vibrio cholerae. Mol Microbiol 59 193 201

41. BorleeBRGoldmanADMurakamiKSamudralaRWozniakDJ 2010 Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75 827 842

42. Martinez-GilMYousef-CoronadoFEspinosa-UrgelM 2010 LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol Microbiol 77 549 561

43. BrandaSSChuFKearnsDBLosickRKolterR 2006 A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59 1229 1238

44. LathemWWGrysTEWitowskiSETorresAGKaperJB 2002 StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol Microbiol 45 277 288

45. SzabadyRLLokutaMAWaltersKBHuttenlocherAWelchRA 2009 Modulation of neutrophil function by a secreted mucinase of Escherichia coli O157:H7. PLoS Pathog 5 e1000320

46. BaselgaRAlbizuIDe La CruzMDel CachoEBarberanM 1993 Phase variation of slime production in Staphylococcus aureus: implications in colonization and virulence. Infect Immun 61 4857 4862

47. HentzerMTeitzelGMBalzerGJHeydornAMolinS 2001 Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183 5395 5401

48. VuongCKocianovaSVoyichJMYaoYFischerER 2004 A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279 54881 54886

49. JacksonKDStarkeyMKremerSParsekMRWozniakDJ 2004 Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186 4466 4475

50. SmithCSHinzABodenmillerDLarsonDEBrunYV 2003 Identification of genes required for synthesis of the adhesive holdfast in Caulobacter crescentus. J Bacteriol 185 1432 1442

51. ShemeshMTamASteinbergD 2007 Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose. J Med Microbiol 56 1528 1535

52. SchoolingSRBeveridgeTJ 2006 Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188 5945 5957

53. YonezawaHOsakiTKurataSFukudaMKawakamiH 2009 Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol 9 197

54. NakamuraSHigashiyamaYIzumikawaKSekiMKakeyaH 2008 The roles of the quorum-sensing system in the release of extracellular DNA, lipopolysaccharide, and membrane vesicles from Pseudomonas aeruginosa. Jpn J Infect Dis 61 375 378

55. HauratMFAduse-OpokuJRangarajanMDorobantuLGrayMR 2011 Selective sorting of cargo proteins into bacterial membrane vesicles. J Biol Chem 286 1269 76

56. BishopALSchildSPatimallaBKleinBCamilliA 2010 Mucosal immunization with Vibrio cholerae outer membrane vesicles provides maternal protection mediated by antilipopolysaccharide antibodies that inhibit bacterial motility. Infect Immun 78 4402 4420

57. SchildSNelsonEJBishopALCamilliA 2009 Characterization of Vibrio cholerae outer membrane vesicles as a candidate vaccine for cholera. Infect Immun 77 472 484

58. SchildSNelsonEJCamilliA 2008 Immunization with Vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect Immun 76 4554 4563

59. HortonRMHuntHDHoSNPullenJKPeaseLR 1989 Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77 61 68

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#