#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cryo Electron Tomography of Herpes Simplex Virus during Axonal Transport and Secondary Envelopment in Primary Neurons


During herpes simplex virus 1 (HSV1) egress in neurons, viral particles travel from the neuronal cell body along the axon towards the synapse. Whether HSV1 particles are transported as enveloped virions as proposed by the ‘married’ model or as non-enveloped capsids suggested by the ‘separate’ model is controversial. Specific viral proteins may form a recruitment platform for microtubule motors that catalyze such transport. However, their subviral location has remained elusive. Here we established a system to analyze herpesvirus egress by cryo electron tomography. At 16 h post infection, we observed intra-axonal transport of progeny HSV1 viral particles in dissociated hippocampal neurons by live-cell fluorescence microscopy. Cryo electron tomography of frozen-hydrated neurons revealed that most egressing capsids were transported independently of the viral envelope. Unexpectedly, we found not only DNA-containing capsids (cytosolic C-capsids), but also capsids lacking DNA (cytosolic A-/B-capsids) in mid-axon regions. Subvolume averaging revealed lower amounts of tegument on cytosolic A-/B-capsids than on C-capsids. Nevertheless, all capsid types underwent active axonal transport. Therefore, even few tegument proteins on the capsid vertices seemed to suffice for transport. Secondary envelopment of capsids was observed at axon terminals. On their luminal face, the enveloping vesicles were studded with typical glycoprotein-like spikes. Furthermore, we noted an accretion of tegument density at the concave cytosolic face of the vesicle membrane in close proximity to the capsids. Three-dimensional analysis revealed that these assembly sites lacked cytoskeletal elements, but that filamentous actin surrounded them and formed an assembly compartment. Our data support the ‘separate model’ for HSV1 egress, i.e. progeny herpes viruses being transported along axons as subassemblies and not as complete virions within transport vesicles.


Vyšlo v časopise: Cryo Electron Tomography of Herpes Simplex Virus during Axonal Transport and Secondary Envelopment in Primary Neurons. PLoS Pathog 7(12): e32767. doi:10.1371/journal.ppat.1002406
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002406

Souhrn

During herpes simplex virus 1 (HSV1) egress in neurons, viral particles travel from the neuronal cell body along the axon towards the synapse. Whether HSV1 particles are transported as enveloped virions as proposed by the ‘married’ model or as non-enveloped capsids suggested by the ‘separate’ model is controversial. Specific viral proteins may form a recruitment platform for microtubule motors that catalyze such transport. However, their subviral location has remained elusive. Here we established a system to analyze herpesvirus egress by cryo electron tomography. At 16 h post infection, we observed intra-axonal transport of progeny HSV1 viral particles in dissociated hippocampal neurons by live-cell fluorescence microscopy. Cryo electron tomography of frozen-hydrated neurons revealed that most egressing capsids were transported independently of the viral envelope. Unexpectedly, we found not only DNA-containing capsids (cytosolic C-capsids), but also capsids lacking DNA (cytosolic A-/B-capsids) in mid-axon regions. Subvolume averaging revealed lower amounts of tegument on cytosolic A-/B-capsids than on C-capsids. Nevertheless, all capsid types underwent active axonal transport. Therefore, even few tegument proteins on the capsid vertices seemed to suffice for transport. Secondary envelopment of capsids was observed at axon terminals. On their luminal face, the enveloping vesicles were studded with typical glycoprotein-like spikes. Furthermore, we noted an accretion of tegument density at the concave cytosolic face of the vesicle membrane in close proximity to the capsids. Three-dimensional analysis revealed that these assembly sites lacked cytoskeletal elements, but that filamentous actin surrounded them and formed an assembly compartment. Our data support the ‘separate model’ for HSV1 egress, i.e. progeny herpes viruses being transported along axons as subassemblies and not as complete virions within transport vesicles.


Zdroje

1. GrünewaldKDesaiPWinklerDCHeymannJBBelnapDM 2003 Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302 1396 1398

2. MaurerUESodeikBGrünewaldK 2008 Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proc Natl Acad Sci U S A 105 10559 10564

3. SchragJDPrasadBVRixonFJChiuW 1989 Three-dimensional structure of the HSV1 nucleocapsid. Cell 56 651 660

4. BooyFPNewcombWWTrusBLBrownJCBakerTS 1991 Liquid-crystalline, phage-like packing of encapsidated DNA in herpes simplex virus. Cell 64 1007 1015

5. NewcombWWTrusBLBooyFPStevenACWallJS 1993 Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. J Mol Biol 232 499 511

6. ZhouZHPrasadBVJakanaJRixonFJChiuW 1994 Protein subunit structures in the herpes simplex virus A-capsid determined from 400 kV spot-scan electron cryomicroscopy. J Mol Biol 242 456 469

7. ZhouZHDoughertyMJakanaJHeJRixonFJ 2000 Seeing the herpesvirus capsid at 8.5 A. Science 288 877 880

8. TrusBLChengNNewcombWWHomaFLBrownJC 2004 Structure and polymorphism of the UL6 portal protein of herpes simplex virus type 1. J Virol 78 12668 12671

9. CardoneGWinklerDCTrusBLChengNHeuserJE 2007 Visualization of the herpes simplex virus portal in situ by cryo-electron tomography. Virology 361 426 434

10. ChangJTSchmidMFRixonFJChiuW 2007 Electron cryotomography reveals the portal in the herpesvirus capsid. J Virol 81 2065 2068

11. HeymannJBChengNNewcombWWTrusBLBrownJC 2003 Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Nat Struct Biol 10 334 341

12. NewcombWWBrownJC 1991 Structure of the herpes simplex virus capsid: effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. J Virol 65 613 620

13. TrusBLNewcombWWChengNCardoneGMarekovL 2007 Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-Filled HSV-1 capsids. Mol Cell 26 479 489

14. SheafferAKNewcombWWGaoMYuDWellerSK 2001 Herpes simplex virus DNA cleavage and packaging proteins associate with the procapsid prior to its maturation. J Virol 75 687 698

15. ConwayJFCockrellSKCopelandAMNewcombWWBrownJC 2010 Labeling and localization of the herpes simplex virus capsid protein UL25 and its interaction with the two triplexes closest to the penton. J Mol Biol 397 575 586

16. RadtkeKKienekeDWolfsteinAMichaelKSteffenW 2010 Plus- and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures. PLoS Pathog 6 e1000991

17. Miranda-SaksenaMBoadleRAArmatiPCunninghamAL 2002 In rat dorsal root ganglion neurons, herpes simplex virus type 1 tegument forms in the cytoplasm of the cell body. J Virol 76 9934 9951

18. WolfsteinANagelCHRadtkeKDöhnerKAllanVJ 2006 The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro. Traffic 7 227 237

19. MettenleiterTCKluppBGGranzowH 2009 Herpesvirus assembly: an update. Virus Res 143 222 234

20. MöhlBSBöttcherSGranzowHKuhnJKluppBG 2009 Intracellular localization of the pseudorabies virus large tegument protein pUL36. J Virol 83 9641 9651

21. BucksMAO'ReganKJMurphyMAWillsJWCourtneyRJ 2007 Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids. Virology 361 316 324

22. CollerKELeeJIUedaASmithGA 2007 The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J Virol 81 11790 11797

23. MettenleiterTC 2006 Intriguing interplay between viral proteins during herpesvirus assembly or: the herpesvirus assembly puzzle. Vet Microbiol 113 163 169

24. DiefenbachRJMiranda-SaksenaMDouglasMWCunninghamAL 2008 Transport and egress of herpes simplex virus in neurons. Rev Med Virol 18 35 51

25. NagelCHDöhnerKFathollahyMStriveTBorstEM 2008 Nuclear egress and envelopment of herpes simplex virus capsids analyzed with dual-color fluorescence HSV1(17+). J Virol 82 3109 3124

26. Miranda-SaksenaMBoadleRAAggarwalATijonoBRixonFJ 2009 Herpes simplex virus utilizes the large secretory vesicle pathway for anterograde transport of tegument and envelope proteins and for viral exocytosis from growth cones of human fetal axons. J Virol 83 3187 3199

27. WisnerTWSugimotoKHowardPWKawaguchiYJohnsonDC 2011 Anterograde transport of herpes simplex virus capsids in neurons by both separate and married mechanisms. J Virol 85 5919 5928

28. SnyderAWisnerTWJohnsonDC 2006 Herpes simplex virus capsids are transported in neuronal axons without an envelope containing the viral glycoproteins. J Virol 80 11165 11177

29. Miranda-SaksenaMWakisakaHTijonoBBoadleRARixonF 2006 Herpes simplex virus type 1 accumulation, envelopment, and exit in growth cones and varicosities in mid-distal regions of axons. J Virol 80 3592 3606

30. EnquistLWTomishimaMJGrossSSmithGA 2002 Directional spread of an alpha-herpesvirus in the nervous system. Vet Microbiol 86 5 16

31. TomishimaMJEnquistLW 2002 In vivo egress of an alphaherpesvirus from axons. J Virol 76 8310 8317

32. SnyderAPolcicovaKJohnsonDC 2008 Herpes simplex virus gE/gI and US9 proteins promote transport of both capsids and virion glycoproteins in neuronal axons. J Virol 82 10613 10624

33. AntinoneSESmithGA 2006 Two modes of herpesvirus trafficking in neurons: membrane acquisition directs motion. J Virol 80 11235 11240

34. FeierbachBBisherMGoodhouseJEnquistLW 2007 In vitro analysis of transneuronal spread of an alphaherpesvirus infection in peripheral nervous system neurons. J Virol 81 6846 6857

35. MareschCGranzowHNegatschAKluppBGFuchsW 2010 Ultrastructural analysis of virion formation and anterograde intraaxonal transport of the alphaherpesvirus pseudorabies virus in primary neurons. J Virol 84 5528 5539

36. AntinoneSEZaichickSVSmithGA 2010 Resolving the assembly state of herpes simplex virus during axon transport by live-cell imaging. J Virol 84 13019 13030

37. HuangJLazearHMFriedmanHM 2011 Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus. Virology 409 12 16

38. LymanMGEnquistLW 2009 Herpesvirus interactions with the host cytoskeleton. J Virol 83 2058 2066

39. DöhnerKNagelCHSodeikB 2005 Viral stop-and-go along microtubules: taking a ride with dynein and kinesins. Trends Microbiol 13 320 327

40. DoddingMPWayM 2011 Coupling viruses to dynein and kinesin-1. EMBO J 30 3527 3539

41. SmithGAGrossSPEnquistLW 2001 Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Proc Natl Acad Sci U S A 98 3466 3470

42. SmithGAPomeranzLGrossSPEnquistLW 2004 Local modulation of plus-end transport targets herpesvirus entry and egress in sensory axons. Proc Natl Acad Sci U S A 101 16034 16039

43. GreberUFWayM 2006 A superhighway to virus infection. Cell 124 741 754

44. RadtkeKDöhnerKSodeikB 2006 Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell Microbiol 8 387 400

45. SodeikBEbersoldMWHeleniusA 1997 Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 136 1007 1021

46. DöhnerKWolfsteinAPrankUEcheverriCDujardinD 2002 Function of dynein and dynactin in herpes simplex virus capsid transport. Mol Biol Cell 13 2795 2809

47. Culver-HanlonTLLexSAStephensADQuintyneNJKingSJ 2006 A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nat Cell Biol 8 264 270

48. LuxtonGWHaverlockSCollerKEAntinoneSEPinceticA 2005 Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc Natl Acad Sci U S A 102 5832 5837

49. LuxtonGWLeeJIHaverlock-MoynsSSchoberJMSmithGA 2006 The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J Virol 80 201 209

50. RobertsAPAbaituaFO'HarePMcNabDRixonFJ 2009 Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1. J Virol 83 105 116

51. DouglasMWDiefenbachRJHomaFLMiranda-SaksenaMRixonFJ 2004 Herpes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and plays a role in retrograde cellular transport. J Biol Chem 279 28522 28530

52. DesaiPPersonS 1998 Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid. J Virol 72 7563 7568

53. AntinoneSEShubeitaGTCollerKELeeJIHaverlock-MoynsS 2006 The Herpesvirus capsid surface protein, VP26, and the majority of the tegument proteins are dispensable for capsid transport toward the nucleus. J Virol 80 5494 5498

54. DöhnerKRadtkeKSchmidtSSodeikB 2006 Eclipse phase of herpes simplex virus type 1 infection: Efficient dynein-mediated capsid transport without the small capsid protein VP26. J Virol 80 8211 8224

55. DiefenbachRJMiranda-SaksenaMDiefenbachEHollandDJBoadleRA 2002 Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain. J Virol 76 3282 3291

56. ZhouZHChenDHJakanaJRixonFJChiuW 1999 Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions. J Virol 73 3210 3218

57. LucicVFörsterFBaumeisterW 2005 Structural studies by electron tomography: from cells to molecules. Annu Rev Biochem 74 833 865

58. AdrianMDubochetJLepaultJMcDowallAW 1984 Cryo-electron microscopy of viruses. Nature 308 32 36

59. DubochetJAdrianMChangJJHomoJCLepaultJ 1988 Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21 129 228

60. WozniakMAShipleySJCombrinckMWilcockGKItzhakiRF 2005 Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer's disease patients. J Med Virol 75 300 306

61. ChenDHJakanaJMcNabDMitchellJZhouZH 2001 The pattern of tegument-capsid interaction in the herpes simplex virus type 1 virion is not influenced by the small hexon-associated protein VP26. J Virol 75 11863 11867

62. TrusBLHomaFLBooyFPNewcombWWThomsenDR 1995 Herpes simplex virus capsids assembled in insect cells infected with recombinant baculoviruses: structural authenticity and localization of VP26. J Virol 69 7362 7366

63. GarvalovBKZuberBBouchet-MarquisCKudryashevMGruskaM 2006 Luminal particles within cellular microtubules. J Cell Biol 174 759 765

64. DesaiPJ 2000 A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol 74 11608 11618

65. LeeJHVittoneVDiefenbachECunninghamALDiefenbachRJ 2008 Identification of structural protein-protein interactions of herpes simplex virus type 1. Virology 378 347 354

66. Miranda-SaksenaMArmatiPBoadleRAHollandDJCunninghamAL 2000 Anterograde transport of herpes simplex virus type 1 in cultured, dissociated human and rat dorsal root ganglion neurons. J Virol 74 1827 1839

67. NegatschAGranzowHMareschCKluppBGFuchsW 2010 Ultrastructural analysis of virion formation and intraaxonal transport of herpes simplex virus type 1 in primary rat neurons. J Virol 84 13031 13035

68. GazzolaMBurckhardtCJBayatiBEngelkeMGreberUF 2009 A stochastic model for microtubule motors describes the in vivo cytoplasmic transport of human adenovirus. PLoS Comput Biol 5 e1000623

69. KluppBGGranzowHKeilGMMettenleiterTC 2006 The capsid-associated UL25 protein of the alphaherpesvirus pseudorabies virus is nonessential for cleavage and encapsidation of genomic DNA but is required for nuclear egress of capsids. J Virol 80 6235 6246

70. BainesJDCunninghamCNalwangaDDavisonA 1997 The U(L)15 gene of herpes simplex virus type 1 contains within its second exon a novel open reading frame that is translated in frame with the U(L)15 gene product. J Virol 71 2666 2673

71. TrusBLGibsonWChengNStevenAC 1999 Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites. J Virol 73 2181 2192

72. NegatschAMettenleiterTCFuchsW 2011 Herpes simplex virus type 1 strain KOS carries a defective US9 and a mutated US8A gene. J Gen Virol 92 167 172

73. LymanMGCuranovicDEnquistLW 2008 Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts. PLoS Pathog 4 e1000065

74. Ben-HarushKMaimonTPatlaIVillaEMedaliaO 2010 Visualizing cellular processes at the molecular level by cryo-electron tomography. J Cell Sci 123 7 12

75. ForsterFHegerlR 2007 Structure determination in situ by averaging of tomograms. Methods Cell Biol 79 741 767

76. ToropovaKHuffmanJBHomaFLConwayJF 2011 The Herpes Simplex Virus 1 UL17 Protein Is the Second Constituent of the Capsid Vertex-Specific Component Required for DNA Packaging and Retention. J Virol 85 7513 7522

77. ThurlowJKMurphyMStowNDPrestonVG 2006 Herpes simplex virus type 1 DNA-packaging protein UL17 is required for efficient binding of UL25 to capsids. J Virol 80 2118 2126

78. CockrellSKHuffmanJBToropovaKConwayJFHomaFL 2011 Residues of the UL25 protein of herpes simplex virus that are required for its stable interaction with capsids. J Virol 85 4875 4887

79. PasdeloupDBlondelDIsidroALRixonFJ 2009 Herpesvirus capsid association with the nuclear pore complex and viral DNA release involve the nucleoporin CAN/Nup214 and the capsid protein pUL25. J Virol 83 6610 6623

80. KluppBGFuchsWGranzowHNixdorfRMettenleiterTC 2002 Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein. J Virol 76 3065 3071

81. VittoneVDiefenbachETriffettDDouglasMWCunninghamAL 2005 Determination of interactions between tegument proteins of herpes simplex virus type 1. J Virol 79 9566 9571

82. KoDHCunninghamALDiefenbachRJ 2010 The major determinant for addition of tegument protein pUL48 (VP16) to capsids in herpes simplex virus type 1 is the presence of the major tegument protein pUL36 (VP1/2). J Virol 84 1397 1405

83. WitteHNeukirchenDBradkeF 2008 Microtubule stabilization specifies initial neuronal polarization. J Cell Biol 180 619 632

84. PerdueMLKempMCRandallCCO'CallaghanDJ 1974 Studies of the molecular anatomy of the L-M cell strain of equine herpes virus type 1: proteins of the nucleocapsid and intact virion. Virology 59 201 216

85. KremerJRMastronardeDNMcIntoshJR 1996 Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116 71 76

86. HeymannJBBelnapDM 2007 Bsoft: image processing and molecular modeling for electron microscopy. J Struct Biol 157 3 18

87. ChengNTrusBLBelnapDMNewcombWWBrownJC 2002 Handedness of the herpes simplex virus capsid and procapsid. J Virol 76 7855 7859

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#